在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)算法原理

工程師鄧生 ? 來(lái)源:未知 ? 作者:劉芹 ? 2023-08-21 16:49 ? 次閱讀

卷積神經(jīng)網(wǎng)絡(luò)算法原理

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)(Deep Learning)的模型,它能夠自動(dòng)地從圖片、音頻、文本等數(shù)據(jù)中提取特征,并且表現(xiàn)出非常出色的性能,在計(jì)算機(jī)視覺(jué)、自然語(yǔ)言處理等領(lǐng)域都有廣泛的應(yīng)用。在本文中,我們將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的算法原理。

一、卷積操作

卷積操作是卷積神經(jīng)網(wǎng)絡(luò)的核心操作之一,它模擬了神經(jīng)元在感受野局部區(qū)域的激活過(guò)程,能夠有效地提取輸入數(shù)據(jù)的局部特征。具體地,卷積操作可以描述如下:

設(shè)輸入數(shù)據(jù)為 $x \in \mathbb{R}^{H_1 \times W_1 \times C_1}$,卷積核為 $w \in \mathbb{R}^{K \times K \times C_1 \times C_2}$,偏差項(xiàng)為 $b \in \mathbb{R}^{C_2}$,則卷積操作可以用下面的公式表示:

$$y_{i,j,k} = b_k + \sum_{u=1}^{K}\sum_{v=1}^{K} \sum_{c=1}^{C_1} w_{u,v,c,k}x_{i+u-1,j+v-1,c}$$

其中,$y \in \mathbb{R}^{H_2 \times W_2 \times C_2}$ 是卷積操作的輸出,$H_2=W_2$ 是輸出數(shù)據(jù)的空間尺寸,$C_2$ 是輸出數(shù)據(jù)的通道數(shù)。卷積操作的作用可以看做是通過(guò)滑動(dòng)卷積核,對(duì)每個(gè)局部輸入數(shù)據(jù)進(jìn)行加權(quán)求和,并加上偏差項(xiàng),從而得到一個(gè)輸出值。

卷積操作和全連接操作最大的不同在于權(quán)重共享。在全連接操作中,每個(gè)神經(jīng)元都有自己的權(quán)重,需要對(duì)全部的神經(jīng)元進(jìn)行訓(xùn)練。而在卷積操作中,卷積核的權(quán)重是共享的,所有的神經(jīng)元都使用同一個(gè)卷積核,并通過(guò)卷積核學(xué)習(xí)到一個(gè)通用的特征提取器,這樣可以減少參數(shù)的數(shù)量,降低過(guò)擬合的風(fēng)險(xiǎn)。

二、池化操作

池化操作(Pooling)是卷積神經(jīng)網(wǎng)絡(luò)中的另一個(gè)重要操作,它能夠把輸入數(shù)據(jù)的分辨率降低,同時(shí)保留局部特征。具體地,池化操作可以描述如下:

設(shè)輸入數(shù)據(jù)為 $x \in \mathbb{R}^{H_1 \times W_1 \times C}$,池化核的大小為 $M \times M$,步幅為 $S$,則池化操作可以用下面的公式表示:

$$y_{i,j,k} = \max_{u=1}^{M}\max_{v=1}^{M} x_{(i-1)S+u,(j-1)S+v,k}$$

其中,$y \in \mathbb{R}^{H_2 \times W_2 \times C}$ 是池化操作的輸出。池化操作主要有兩個(gè)作用:一是降低了輸入數(shù)據(jù)的空間分辨率,這樣能減少計(jì)算量,同時(shí)能夠有效地避免過(guò)擬合的問(wèn)題;二是保留了輸入數(shù)據(jù)的局部特征,這樣能夠提升模型的表征能力。常見的池化操作包括最大池化和平均池化,其中最大池化被廣泛應(yīng)用于卷積神經(jīng)網(wǎng)絡(luò)中。

三、激活函數(shù)

激活函數(shù)是神經(jīng)網(wǎng)絡(luò)中的一個(gè)關(guān)鍵組件,它能夠增加網(wǎng)絡(luò)的非線性表征能力,在卷積神經(jīng)網(wǎng)絡(luò)中,通常使用的激活函數(shù)包括 Sigmoid 函數(shù)、ReLU 函數(shù)、LeakyReLU 函數(shù)等。其中 ReLU 函數(shù)是最常用的激活函數(shù),其數(shù)學(xué)表達(dá)式為:

$$\text{ReLU}(x) = \max(0,x)$$

它的導(dǎo)數(shù)為:

$$\text{ReLU}'(x) = \begin{cases} 1 & x > 0 \\ 0 & x \leq 0 \end{cases}$$

ReLU 函數(shù)的主要作用是在神經(jīng)網(wǎng)絡(luò)的非線性變換層中引入非線性,從而讓神經(jīng)網(wǎng)絡(luò)可以擬合更加復(fù)雜的函數(shù)。相較于 Sigmoid 函數(shù),ReLU 函數(shù)有以下優(yōu)點(diǎn):一是避免了 Sigmoid 函數(shù)的梯度消失問(wèn)題,可以更好地訓(xùn)練深度神經(jīng)網(wǎng)絡(luò);二是計(jì)算速度更快。

四、卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)

卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)通常包括若干個(gè)卷積層、池化層和全連接層,其中卷積層和池化層對(duì)輸入數(shù)據(jù)進(jìn)行特征提取和降維處理,全連接層對(duì)輸入數(shù)據(jù)進(jìn)行分類或回歸。

在卷積神經(jīng)網(wǎng)絡(luò)中,不同卷積層和池化層的作用是不同的。例如,第一層卷積層通常會(huì)學(xué)習(xí)到一些基礎(chǔ)的濾波器,如邊緣檢測(cè)、紋理識(shí)別等;第二層卷積層會(huì)繼續(xù)學(xué)習(xí)更加高級(jí)的特征表示,如形狀、輪廓;第三層卷積層可以進(jìn)一步學(xué)習(xí)到更加復(fù)雜的特征表示,如面部特征、目標(biāo)識(shí)別等。而池化層則可以幫助卷積層更好地對(duì)輸入數(shù)據(jù)進(jìn)行降維處理,提高模型的泛化能力。最后的全連接層則可以通過(guò)對(duì)特征向量進(jìn)行分類或回歸來(lái)完成任務(wù)。

五、卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練

卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練可以通過(guò)基于梯度下降的反向傳播算法來(lái)實(shí)現(xiàn),具體過(guò)程可以描述如下:

1. 隨機(jī)初始化卷積核和偏差項(xiàng)的值;
2. 前向傳播,計(jì)算損失函數(shù);
3. 反向傳播,計(jì)算損失函數(shù)對(duì)網(wǎng)絡(luò)中的參數(shù)(包括卷積核和偏差項(xiàng))的梯度;
4. 使用梯度更新網(wǎng)絡(luò)中的參數(shù);
5. 重復(fù) 2~4 步,直到達(dá)到訓(xùn)練的輪數(shù)或者滿足訓(xùn)練停止條件為止。

在實(shí)際訓(xùn)練中,還需要進(jìn)行一些優(yōu)化來(lái)提高卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練效率和性能,例如批量歸一化(Batch Normalization)、正則化(Regularization)、優(yōu)化算法(如 Adam、SGD、Adagrad 等)、學(xué)習(xí)率調(diào)整策略等。

六、總結(jié)

本文介紹了卷積神經(jīng)網(wǎng)絡(luò)的算法原理,包括卷積操作、池化操作、激活函數(shù)、網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練過(guò)程等方面。卷積神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)領(lǐng)域的一種重要模型,能夠有效地從圖像、音頻、文本等領(lǐng)域的輸入數(shù)據(jù)中提取特征,獲得出色的性能。通過(guò)理解卷積神經(jīng)網(wǎng)絡(luò)的算法原理,可以更好地應(yīng)用和優(yōu)化卷積神經(jīng)網(wǎng)絡(luò),提高模型性能,解決實(shí)際問(wèn)題。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?615次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    ),是深度學(xué)習(xí)的代表算法之一。 一、基本原理 卷積運(yùn)算 卷積運(yùn)算是卷積神經(jīng)網(wǎng)絡(luò)的核心,用于提取圖像中的局部特征。 定義
    的頭像 發(fā)表于 11-15 14:47 ?872次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點(diǎn)

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)算法,它在圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域有著廣泛的應(yīng)用。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-11 14:38 ?1164次閱讀

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1664次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1401次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別在哪

    結(jié)構(gòu)、原理、應(yīng)用場(chǎng)景等方面都存在一定的差異。以下是對(duì)這兩種神經(jīng)網(wǎng)絡(luò)的詳細(xì)比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。每個(gè)神經(jīng)元之間通過(guò)權(quán)重連接,
    的頭像 發(fā)表于 07-04 09:49 ?9794次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:49 ?592次閱讀

    bp神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    結(jié)構(gòu)、原理、應(yīng)用場(chǎng)景等方面都存在一定的差異。以下是對(duì)這兩種神經(jīng)網(wǎng)絡(luò)的比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。每個(gè)神經(jīng)元之間通過(guò)權(quán)重連接,并通
    的頭像 發(fā)表于 07-03 10:12 ?1285次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)分類方法有哪些

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像分類、目標(biāo)檢測(cè)、語(yǔ)義分割等計(jì)算機(jī)視覺(jué)任務(wù)。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 09:40 ?512次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 09:15 ?458次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實(shí)現(xiàn)

    1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域。 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋
    的頭像 發(fā)表于 07-02 16:47 ?649次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)及其功能

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的基
    的頭像 發(fā)表于 07-02 14:45 ?2457次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的原
    的頭像 發(fā)表于 07-02 14:44 ?722次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡(jiǎn)稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4500次閱讀

    基于胎心儀的胎兒心臟診斷神經(jīng)網(wǎng)絡(luò)

    SVC和MLP中,分類精度計(jì)算如 下: 卷積神經(jīng)網(wǎng)絡(luò)是人工神經(jīng)網(wǎng)絡(luò)之一。 卷積神經(jīng)網(wǎng)絡(luò)算法已成功
    發(fā)表于 05-14 18:47
    主站蜘蛛池模板: 日韩色中色| 亚洲精品视频专区| 一区二区三区视频观看| 午夜在线播放| 四虎影院在线播放| 一区二区三区在线看| 看屁屁www视频免费观看| 欧美一区二区三区大片| 99久久成人国产精品免费| 2021最新久久久视精品爱| 天天操天天干天天透| 欧美一级片手机在线观看| 在线观看www日本免费网站| 丁香综合激情| 黄网免费| 国产精品毛片久久久久久久| 色免费在线| 123成人网| 黄色网久久| 天天插伊人| 亚洲射图| 成人网18免费下| 久久国产乱子伦精品免| 在线观看三级网站| 一区二区三区四区在线 | 亚洲黄色官网| 国产亚洲一区二区三区啪| 91大神精品在线观看| 爱爱视频天天干| www.xxx日本人| 久久2017| 久久亚洲综合色| 性生交大片免费一级| www三级| 日本一区高清视频| 亚洲国产精品国产自在在线| 黄视频网站入口| 男人日女人视频在线观看| 啪啪免费视频网站| 婷婷亚洲五月琪琪综合| 2021国产成人午夜精品|