在電源系統設計中,當一個電源模塊的功率無法滿足系統的需求時,往往會考慮多個模塊的并聯使用。如果并聯設計不合理,就會導致并聯模塊輸出均流失效,會有燒壞電源模塊、甚至損壞后級系統的風險。
目前電源系統的發展趨勢采用新型的功率器件實現小型、輕量、高效率的電源模塊化,通過并聯進行擴容。電源并聯運行是電源產品模塊化、大容量化的一個有效方案,是電源技術發展的趨勢之一,是實現組合大功率電源系統的重點。
很多工程師剛接觸電路系統設計時,總會把多個電源模塊并聯一起使用,導致模塊輸出無法均流,使得模塊輸出短路、啟動異常、損壞等現象。要徹底解決并聯模塊無法均流的問題,必須從模塊的結構和輸出特性入手,尋找根本原因。
圖1
圖1為電源模塊的內部等效與輸出負載特性曲線:VO=f(IO),R為模塊的輸出阻抗(包含導線電阻和接觸電阻等),空載時,模塊輸出電壓為最大值VO(max)。當負載電流變化△IO時,負載電壓變化量為△VO,△VO=R*△IO,R*△IO也表示模塊的負載調整率。負載電壓VO與負載電流IO的關系可表示為:
VO=VO(max)- R*IO
當兩個模塊相互并聯,如圖2所示,則有:
VO1=VO1(max)-R1*IO1VO2=VO2(max)-R2*IO2
IO=IO1+IO2
如果兩個模塊的參數完全相同時,即:VO1(max)=VO2(max)、R1=R2,則兩條負載特性曲線重合,能實現負載電流均勻分配。但在實際應用中,兩個具有相同容量的模塊,VO1(max)與VO2(max)、R1與R2的參數也不可能完全做到相同。從圖2可以看出,由于輸出到負載RL的等效阻抗R1、R2很小,輸出電壓即便出現很小的差別也會引起輸出電流很大的變化。例如:當負載RL電流由IO=IO1+IO2增大到IO`=IO1`+IO2`時,負載特性曲線斜率小的模塊1將承受大部分負載電流,模塊1將運行在滿載或過載限流狀態,影響模塊的可靠性。
圖2
通過對圖1、圖2的分析可知:造成相互并聯的電源模塊不均流的主要原因是輸出電壓和等效阻抗不一致。
電阻并聯法
圖3是一種采用比較多的電源并聯方案:電源輸出電阻并聯法。在兩組模塊輸出端先分別串接電阻R1、R2,然后再并聯。此種方案主要利用電阻R1、R2上的線性電壓,使得兩組模塊盡量達到負載均衡目的,避免負載特性曲線斜率小的模塊承受大電流輸出。此并聯方案成本低,但只適合在精度要求不高、輸出功率不大的場合。
圖3
?二極管并聯法
圖4是電源輸出二極管并聯法,在兩組模塊輸出端先分別串接二極管D1、D2,然后再并聯。此種方案與電源輸出電阻并聯法原理相同,優點在于可以利用二極管防止不同電源模塊的輸出電流逆流到另外一個模塊,形成內環流。
圖4
-
電源
+關注
關注
185文章
18068瀏覽量
253535 -
二極管
+關注
關注
148文章
9938瀏覽量
168989 -
模塊
+關注
關注
7文章
2761瀏覽量
48500 -
電壓
+關注
關注
45文章
5664瀏覽量
116876 -
系統
+關注
關注
1文章
1024瀏覽量
21571
發布評論請先 登錄
相關推薦
電源模塊的散熱技術解析
電源模塊的測試方法及要求
數字電源模塊連續調節怎么調
如何選擇合適的電源模塊?你了解電源模塊可靠性測試嗎?

使用DCAC電源模塊時需要注意的事項

常用的電源模塊有哪些
電源模塊是什么東西
如何選擇適合自己應用的AC/DC電源模塊?

AC/DC電源模塊的基本原理與應用

電源模塊應用疑惑與解惑

AC/DC電源模塊的設計與實現技巧

DC電源模塊的性能評估和比較
DC電源模塊的使用注意事項和安全規范

評論