在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

從AI發展時間表回顧人工智能的歷史

知識酷Pro ? 來源:知識酷Pro ? 2023-08-29 15:42 ? 次閱讀

人工智能的現代概念已經伴隨我們走過了幾十年,但直到最近,人工智能才抓住了日常生活、商業和社會的集體心理。

人工智能是指計算機和系統執行通常需要人類認知才能完成任務的能力。人工智能與人的關系是共生的,其“觸角”觸及人類生產、生活的方方面面,從疾病患者的早期檢測和更好的治療,到各種形式和各種規模企業新的收入來源和更好的運營管理,如今已是無處不在。

自1950年圖靈測試以來,人工智能工具和技術已經取得了令人難以置信的進步,其中許多突破性進展一直在業界的關注下被頻繁發掘。盡管如此,直到過去十年,人工智能才真正應用于滿足大眾需求的場景,智能語言助理、自動駕駛汽車、生成式AI等等徹底改變了大眾市場的需求格局。

我們或許可以透過人工智能發展迄今為止的歷史時間表來思考AI的未來,以及對大眾生活的影響:

1950年

艾倫·圖靈發表了《計算機器與智能》,圖靈測試打開了通向人工智能的大門。

1951年

Marvin Minsky 和 Dean Edmonds 使用3000個真空管來模擬由40個神經元組成的網絡,開發了第一個名為SNARC的人工神經網絡(ANN)。

1952年

Arthur Samuel開發了Samuel Checkers-Playing Program,這是世界上第一個自學游戲的程序。

1956年

約翰·麥卡錫、馬文·明斯基、納撒尼爾·羅切斯特和克勞德·香農在一項研討會提案中創造了“人工智能”一詞,該研討會被廣泛認為是人工智能領域的創始活動。

1958年

弗蘭克·羅森布拉特開發了感知器,這是一種可以從數據中學習的早期人工神經網絡,可以看成是現代神經網絡的基礎。

約翰·麥卡錫開發了Lisp編程語言,該語言很快被人工智能行業采用,并受到開發人員歡迎。

1959年

亞瑟·塞繆爾在一篇開創性論文中創造了“機器學習”一詞,解釋說明計算機可以通過編程來超越程序員

Oliver Selfridge發表了《Pandemonium:學習范式》,這是對機器學習的里程碑式貢獻,它描述了一種可以自適應改進自身以發現事件模式的模型。

1964年

Daniel Bobro在麻省理工學院攻讀博士期間開發了STUDENT,這是一個早期的自然語言處理NLP程序,旨在解決代數相關問題。

1965年

Edward Feigenbaum、Bruce G. Buchanan、Joshua Lederberg和Carl Djerassi開發了第一個專家系統Dendral,該系統幫助有機化學家識別未知的有機分子。

1966年

Joseph Weizenbaum創建了Eliza,這是有史以來最著名的計算機程序之一,它能夠與人類進行對話,并使人相信該軟件具有人類情感。

斯坦福研究院開發了首款結合人工智能、計算機視覺、導航和自然語言處理的移動智能機器人Shakey。它是自動駕駛汽車和無人機的鼻祖。

1968年

Terry Winograd創建了SHRDLU,這是第一個多模態人工智能,可以根據用戶指令操作并推理出一個由塊組成的世界。

1969年

Arthur Bryson和Yu-Chi Ho描述了一種可實現多層人工神經網絡的反向傳播學習算法,它是感知器的技術的延伸,也是深度學習的基礎。

Marvin Minsky和Seymour Papert出版了《感知器》一書,描述了簡單神經網絡的局限性,這導致了神經網絡研究的衰落,符號人工智能研究得以蓬勃發展。

1973年

詹姆斯·萊特希爾發布的《人工智能:綜合調查》報告導致英國大幅減少對人工智能研究的支持。

1980年

符號Lisp機器商業化,標志著人工智能研究復興。但幾年后,Lisp機器市場崩潰了。

1981年

Danny Hillis為人工智能和其他計算任務設計了并行計算機,其架構類似于現代GPU

1984年

馬文·明斯基和羅杰·尚克在人工智能促進協會的一次會議上創造了“人工智能冬天”一詞,警告商界人工智能炒作將導致大眾失望和行業崩潰,這在三年后發生了。

1985年

Judea Pearl引入了貝葉斯網絡因果分析,它提供了表示計算機中不確定性的統計技術。

1988年

彼得·布朗等人發表了“語言翻譯的統計方法”,為機器翻譯方法的更廣泛的研究鋪平了道路。

1989年

Yann LeCun、Yoshua Bengio和Patrick Haffner演示了如何使用卷積神經網絡(CNN) 來識別手寫字符,表明神經網絡可以應用于現實世界的問題。

1997年

Sepp Hochreiter和Jürgen Schmidhuber提出了長短期記憶遞歸神經網絡,它可以處理整個數據序列,例如語音或視頻

IBM的“深藍”在一場歷史性的國際象棋復賽中擊敗了加里·卡斯帕羅夫,這是國際象棋衛冕世界冠軍在錦標賽上首次被計算機打敗。

2000年

蒙特利爾大學的研究人員發表了“神經概率語言模型”,提出了一種使用前饋神經網絡來建模語言的方法。

2006年

李飛飛開始研究(后來于2009年推出)ImageNet視覺數據庫,該數據庫成為了人工智能熱潮的催化劑,也是圖像識別算法年度競賽的基礎。

2009年

Rajat Raina、Anand Madhavan和Andrew Ng發表了《使用圖形處理器進行大規模深度無監督學習》,提出了使用GPU訓練大型神經網絡的想法。

2011年

Jürgen Schmidhuber、Dan Claudiu Cire?an、Ueli Meier和Jonathan Masci開發了第一個CNN,并贏得了德國交通標志識別競賽,從而實現了“超人”的性能。

同年,蘋果發布了Siri語音助理。

2012年

Geoffrey Hinton、Ilya Sutskever和Alex Krizhevsky介紹了一種深度CNN架構,該架構贏得了ImageNet 挑戰并引發了深度學習研究和實現的爆炸式增長。

2013年

天河二號以33.86petaflops的速度將世界頂級超級計算速度提高了一倍,連續第三次蟬聯世界最快系統的稱號。

DeepMind引入深度強化學習,這是一種基于獎勵和重復學習的CNN,抵達了人類專家的水平。

谷歌研究員Tomas Mikolov及其同事引入了Word2vec,以自動識別單詞之間的語義關系。

2014年

Ian Goodfellow及其同事創造了生成對抗網絡,這是一類用于生成照片、轉換圖像和深度模擬的機器學習框架。

Diederik Kingma和Max Welling引入了變分自動編碼器來生成圖像、視頻和文本。

Facebook開發了深度學習面部識別系統DeepFace,能夠以接近人類的準確度識別數字圖像中的人臉。

2016年

DeepMind的AlphaGo在韓國首爾擊敗了圍棋頂尖選手李世石。

優步在匹茲堡針對特定用戶群體啟動了自動駕駛汽車試點計劃。

2017年

斯坦福大學研究人員在論文《使用非平衡熱力學的深度無監督學習》中發表了有關擴散模型的研究成果。該技術提供了一種向圖像添加噪聲的過程進行逆向工程的方法。

谷歌研究人員在論文Attention Is All You Need中提出了Transformer的概念,啟發了后續對能夠自動將未標記文本解析為大型語言模型 (LLM) 的工具的研究。

英國物理學家史蒂芬·霍金警告說:“除非我們學會如何為潛在風險做好準備,否則人工智能可能成為人類文明史上最糟糕的事件。”

2018年

Cimon由IBM、空客公司和德國航空航天中心DLR開發,這是一個被送入太空協助宇航員的機器人

OpenAI發布了GPT(Generative Pre-trained Transformer),為后續的LLM鋪平了道路。

Groove X推出了一款名為Lovot的家用迷你機器人,它可以感知并響應人類的情緒變化。

2019年

微軟推出了Turing Natural Language Generation生成語言模型,該模型擁有170億個參數

谷歌人工智能和朗格醫學中心的深度學習算法表明在檢測潛在肺癌方面優于放射科醫生。

2020年

Open AI發布了由1750億個參數組成的GPT-3 LLM,用于生成式AI文本。

英偉達宣布推出Omniverse平臺測試版,用于在增強現實AR中創建3D模型。

2021年

OpenAI推出了Dall-E多模態AI系統,可以根據文本提示生成圖像。

2022年

谷歌軟件工程師Blake Lemoine泄密Lamda架構并聲稱其具有感知能力。

DeepMind推出用于為矩陣乘法等數學問題發現新型、高效且可驗證的算法的AI系統AlphaTensor。

英特爾聲稱其FakeCatcher實時Deepfake檢測器的準確度為 96%。

OpenAI于11月發布了ChatGPT,基于GPT-3.5 LLM并提供終端用戶使用的UI聊天界面。

2023年

OpenAI宣布推出GPT-4多模態LLM,可接收文本和圖像輸入。

埃隆·馬斯克、史蒂夫·沃茲尼亞克與數千位簽名者敦促業界暫停訓練“比GPT-4更強大的人工智能系統”六個月。

2023年之后

AI的歷史仍在繼續……

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 計算機
    +關注

    關注

    19

    文章

    7504

    瀏覽量

    88053
  • AI
    AI
    +關注

    關注

    87

    文章

    30979

    瀏覽量

    269250
  • 人工智能
    +關注

    關注

    1791

    文章

    47336

    瀏覽量

    238696

原文標題:從AI發展時間表回顧人工智能的歷史

文章出處:【微信號:ZHISHIKU-Pro,微信公眾號:知識酷Pro】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    微軟AI CEO蘇萊曼談對于人工智能的未來發展

    日前,微軟 AI CEO 穆斯塔法·蘇萊曼在清華大學的演講中,分享了他對人工智能未來發展的深刻洞見。蘇萊曼提出了三個對于 AI 的核心觀點——首先,他強調,
    的頭像 發表于 11-15 13:53 ?282次閱讀

    嵌入式和人工智能究竟是什么關系?

    領域,如工業控制、智能家居、醫療設備等。 人工智能是計算機科學的一個分支,它研究如何使計算機具備像人類一樣思考、學習、推理和決策的能力。人工智能發展歷程可以追溯到上世紀50年代,經
    發表于 11-14 16:39

    RISC-V在AI領域的發展前景怎么樣?

    隨著人工智能的不斷發展,現在的視覺機器人,無人駕駛等智能產品的不斷更新迭代,發現ARM占用很大的市場份額,推出的ARM Cortex M85性能也是杠杠的,不知道RISC-V在AI領域
    發表于 10-25 19:13

    AI for Science:人工智能驅動科學創新》第6章人AI與能源科學讀后感

    不僅提高了能源的生產效率和管理水平,還為未來的可持續發展提供了有力保障。隨著技術的不斷進步和應用場景的不斷拓展,人工智能將在能源科學領域發揮更加重要的作用。 總結 《AI for Science:
    發表于 10-14 09:27

    AI for Science:人工智能驅動科學創新》第4章-AI與生命科學讀后感

    。 4. 對未來生命科學發展的展望 在閱讀這一章后,我對未來生命科學的發展充滿了期待。我相信,在人工智能技術的推動下,生命科學將取得更加顯著的進展。例如,在藥物研發領域,AI技術將幫助
    發表于 10-14 09:21

    AI for Science:人工智能驅動科學創新》第二章AI for Science的技術支撐學習心得

    ,推動科學研究的深入發展。 總結 通過閱讀《AI for Science:人工智能驅動科學創新》第二章,我對AI for Science的技術支撐有了更加全面和深入的理解。我深刻認識到
    發表于 10-14 09:16

    AI for Science:人工智能驅動科學創新》第一章人工智能驅動的科學創新學習心得

    的同時,確保其公正性、透明度和可持續性,是當前和未來科學研究必須面對的重要課題。此外,培養具備AI技能的科研人才,也是推動這一領域發展的關鍵。 4. 激發創新思維 閱讀這一章,我被深深啟發的是人工智能
    發表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    時間運行或電池供電的設備尤為重要。 高性能 : 盡管RISC-V架構以低功耗著稱,但其高性能也不容忽視。通過優化指令集和處理器設計,RISC-V可以在處理復雜的人工智能圖像處理任務時表現出色。 三
    發表于 09-28 11:00

    人工智能ai 數電 模電 模擬集成電路原理 電路分析

    人工智能ai 數電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學 不過好像都是要學的
    發表于 09-26 15:24

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領域應用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個需要研究的課題,本書對ai4s基本原理和原則,方法進行描訴,有利于總結經驗,擬
    發表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅動科學創新

    大力發展AI for Science的原因。 第2章科學研究底層的理論模式與主要困境,以及人工智能三要素(數據、算法、算力)出發,對AI
    發表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產業博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能
    發表于 08-22 15:00

    FPGA在人工智能中的應用有哪些?

    定制化的硬件設計,提高了硬件的靈活性和適應性。 綜上所述,FPGA在人工智能領域的應用前景廣闊,不僅可以用于深度學習的加速和云計算的加速,還可以針對特定應用場景進行定制化計算,為人工智能技術的發展提供有力支持。
    發表于 07-29 17:05

    人工智能AI芯片的概述

    人工智能AI)技術的快速發展已經成為當今科技領域的熱點話題。
    的頭像 發表于 02-29 09:10 ?5258次閱讀

    嵌入式人工智能的就業方向有哪些?

    于工業、農業、醫療、城市建設、金融、航天軍工等多個領域。在新時代發展背景下,嵌入式人工智能已是大勢所趨,成為當前最熱門的AI商業化途徑之一。
    發表于 02-26 10:17
    主站蜘蛛池模板: 性欧美高清极品xx| 日本3级视频| 天天视频观看| 国产资源在线免费观看| 性欧美高清视频| 天天干天天色天天干| 国产三级视频在线播放| 色多多最新地址福利地址| 老师下面好紧| 成人免费看黄网站yyy456| 日日操日日爽| 亚洲国产精品久久网午夜| 国产女乱淫真高清免费视频| 欧美一级欧美三级在线| 乱妇伦小说| 99久久久久久久| 日本在线视频二区| 分分精品| 99热免费| 上课被同桌强行摸下面小黄文| 亚洲你xx我xx网站| 中国女人a毛片免费全部播放| 香蕉成人国产精品免费看网站 | 亚洲精品成人在线| av免费网站在线观看| 下农村女人一级毛片| 性欧美久久| 欧美色欧美亚洲高清在线视频 | 啪啪日韩| 免费啪啪网| 丁香激情五月| aaaa级毛片| 人与牲动交xx| www五月天| 1000部啪啪| 91成人在线播放| 精品亚洲午夜久久久久| 激情福利视频| 日本不卡专区| 手机在线黄色网址| 日本亚洲欧美国产日韩ay高清|