在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用Pytorch實(shí)現(xiàn)頻譜歸一化生成對(duì)抗網(wǎng)絡(luò)(SN-GAN)

冬至子 ? 來(lái)源:思否AI ? 作者:思否AI ? 2023-10-18 10:59 ? 次閱讀

自從擴(kuò)散模型發(fā)布以來(lái),GAN的關(guān)注度和論文是越來(lái)越少了,但是它們里面的一些思路還是值得我們了解和學(xué)習(xí)。所以本文我們來(lái)使用Pytorch 來(lái)實(shí)現(xiàn)SN-GAN

譜歸一化生成對(duì)抗網(wǎng)絡(luò)是一種生成對(duì)抗網(wǎng)絡(luò),它使用譜歸一化技術(shù)來(lái)穩(wěn)定鑒別器的訓(xùn)練。譜歸一化是一種權(quán)值歸一化技術(shù),它約束了鑒別器中每一層的譜范數(shù)。這有助于防止鑒別器變得過(guò)于強(qiáng)大,從而導(dǎo)致不穩(wěn)定和糟糕的結(jié)果。

SN-GAN由Miyato等人(2018)在論文“生成對(duì)抗網(wǎng)絡(luò)的譜歸一化”中提出,作者證明了sn - gan在各種圖像生成任務(wù)上比其他gan具有更好的性能。

SN-GAN的訓(xùn)練方式與其他gan相同。生成器網(wǎng)絡(luò)學(xué)習(xí)生成與真實(shí)圖像無(wú)法區(qū)分的圖像,而鑒別器網(wǎng)絡(luò)學(xué)習(xí)區(qū)分真實(shí)圖像和生成圖像。這兩個(gè)網(wǎng)絡(luò)以競(jìng)爭(zhēng)的方式進(jìn)行訓(xùn)練,它們最終達(dá)到一個(gè)點(diǎn),即生成器能夠產(chǎn)生逼真的圖像,從而欺騙鑒別器。

以下是SN-GAN相對(duì)于其他gan的優(yōu)勢(shì)總結(jié):

  • 更穩(wěn)定,更容易訓(xùn)練
  • 可以生成更高質(zhì)量的圖像
  • 更通用,可以用來(lái)生成更廣泛的內(nèi)容。

模式崩潰

模式崩潰是生成對(duì)抗網(wǎng)絡(luò)(GANs)訓(xùn)練中常見的問(wèn)題。當(dāng)GAN的生成器網(wǎng)絡(luò)無(wú)法產(chǎn)生多樣化的輸出,而是陷入特定的模式時(shí),就會(huì)發(fā)生模式崩潰。這會(huì)導(dǎo)致生成的輸出出現(xiàn)重復(fù),缺乏多樣性和細(xì)節(jié),有時(shí)甚至與訓(xùn)練數(shù)據(jù)完全無(wú)關(guān)。

GAN中發(fā)生模式崩潰有幾個(gè)原因。一個(gè)原因是生成器網(wǎng)絡(luò)可能對(duì)訓(xùn)練數(shù)據(jù)過(guò)擬合。如果訓(xùn)練數(shù)據(jù)不夠多樣化,或者生成器網(wǎng)絡(luò)太復(fù)雜,就會(huì)發(fā)生這種情況。另一個(gè)原因是生成器網(wǎng)絡(luò)可能陷入損失函數(shù)的局部最小值。如果學(xué)習(xí)率太高,或者損失函數(shù)定義不明確,就會(huì)發(fā)生這種情況。

以前有許多技術(shù)可以用來(lái)防止模式崩潰。比如使用更多樣化的訓(xùn)練數(shù)據(jù)集。或者使用正則化技術(shù),例如dropout或批處理歸一化,使用合適的學(xué)習(xí)率和損失函數(shù)也很重要。

Wassersteian損失

Wasserstein損失,也稱為Earth Mover’s Distance(EMD)或Wasserstein GAN (WGAN)損失,是一種用于生成對(duì)抗網(wǎng)絡(luò)(GAN)的損失函數(shù)。引入它是為了解決與傳統(tǒng)GAN損失函數(shù)相關(guān)的一些問(wèn)題,例如Jensen-Shannon散度和Kullback-Leibler散度。

Wasserstein損失測(cè)量真實(shí)數(shù)據(jù)和生成數(shù)據(jù)的概率分布之間的差異,同時(shí)確保它具有一定的數(shù)學(xué)性質(zhì)。他的思想是最小化這兩個(gè)分布之間的Wassersteian距離(也稱為地球移動(dòng)者距離)。Wasserstein距離可以被認(rèn)為是將一個(gè)分布轉(zhuǎn)換為另一個(gè)分布所需的最小“成本”,其中“成本”被定義為將概率質(zhì)量從一個(gè)位置移動(dòng)到另一個(gè)位置所需的“工作量”。

Wasserstein損失的數(shù)學(xué)定義如下:

對(duì)于生成器G和鑒別器D, Wasserstein損失(Wasserstein距離)可以表示為:

Jensen-Shannon散度(JSD): Jensen-Shannon散度是一種對(duì)稱度量,用于量化兩個(gè)概率分布之間的差異

對(duì)于概率分布P和Q, JSD定義如下:

JSD(P∥Q)=1/2(KL(P∥M)+KL(Q∥M))

M為平均分布,KL為Kullback-Leibler散度,P∥Q為分布P與分布Q之間的JSD。

JSD總是非負(fù)的,在0和1之間有界,并且對(duì)稱(JSD(P|Q) = JSD(Q|P))。它可以被解釋為KL散度的“平滑”版本。

Kullback-Leibler散度(KL散度):Kullback-Leibler散度,通常被稱為KL散度或相對(duì)熵,通過(guò)量化“額外信息”來(lái)測(cè)量?jī)蓚€(gè)概率分布之間的差異,這些“額外信息”需要使用另一個(gè)分布作為參考來(lái)編碼一個(gè)分布。

對(duì)于兩個(gè)概率分布P和Q,從Q到P的KL散度定義為:KL(P∥Q)=∑x P(x)log(Q(x)/P(x))。KL散度是非負(fù)非對(duì)稱的,即KL(P∥Q)≠KL(Q∥P)。當(dāng)且僅當(dāng)P和Q相等時(shí)它為零。KL散度是無(wú)界的,可以用來(lái)衡量分布之間的不相似性。

1-Lipschitz Contiunity

1- lipschitz函數(shù)是斜率的絕對(duì)值以1為界的函數(shù)。這意味著對(duì)于任意兩個(gè)輸入x和y,函數(shù)輸出之間的差不超過(guò)輸入之間的差。

數(shù)學(xué)上函數(shù)f是1-Lipschitz,如果對(duì)于f定義域內(nèi)的所有x和y,以下不等式成立:

|f(x) — f(y)| <= |x — y|

在生成對(duì)抗網(wǎng)絡(luò)(GANs)中強(qiáng)制Lipschitz連續(xù)性是一種用于穩(wěn)定訓(xùn)練和防止與傳統(tǒng)GANs相關(guān)的一些問(wèn)題的技術(shù),例如模式崩潰和訓(xùn)練不穩(wěn)定。在GAN中實(shí)現(xiàn)Lipschitz連續(xù)性的主要方法是通過(guò)使用Lipschitz約束或正則化,一種常用的方法是Wasserstein GAN (WGAN)。

在標(biāo)準(zhǔn)gan中,鑒別器(也稱為WGAN中的批評(píng)家)被訓(xùn)練來(lái)區(qū)分真實(shí)和虛假數(shù)據(jù)。為了加強(qiáng)Lipschitz連續(xù)性,WGAN增加了一個(gè)約束,即鑒別器函數(shù)應(yīng)該是Lipschitz連續(xù)的,這意味著函數(shù)的梯度不應(yīng)該增長(zhǎng)得太大。在數(shù)學(xué)上,它被限制為:

∥∣D(x)?D(y)∣≤K?∥x?y

其中D(x)是評(píng)論家對(duì)數(shù)據(jù)點(diǎn)x的輸出,D(y)是y的輸出,K是Lipschitz 常數(shù)。

WGAN的權(quán)重裁剪:在原始的WGAN中,通過(guò)在每個(gè)訓(xùn)練步驟后將鑒別器網(wǎng)絡(luò)的權(quán)重裁剪到一個(gè)小范圍(例如,[-0.01,0.01])來(lái)強(qiáng)制執(zhí)行該約束。權(quán)重裁剪確保了鑒別器的梯度保持在一定范圍內(nèi),并加強(qiáng)了利普希茨連續(xù)性。

WGAN的梯度懲罰: WGAN的一種變體,稱為WGAN-GP,它使用梯度懲罰而不是權(quán)值裁剪來(lái)強(qiáng)制Lipschitz約束。WGAN-GP基于鑒別器的輸出相對(duì)于真實(shí)和虛假數(shù)據(jù)之間的隨機(jī)點(diǎn)的梯度,在損失函數(shù)中添加了一個(gè)懲罰項(xiàng)。這種懲罰鼓勵(lì)了Lipschitz約束,而不需要權(quán)重裁剪。

譜范數(shù)

從符號(hào)上看矩陣

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 編碼器
    +關(guān)注

    關(guān)注

    45

    文章

    3646

    瀏覽量

    134673
  • 生成器
    +關(guān)注

    關(guān)注

    7

    文章

    316

    瀏覽量

    21042
  • 頻譜儀
    +關(guān)注

    關(guān)注

    7

    文章

    340

    瀏覽量

    36077
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    808

    瀏覽量

    13239
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    利用Arm Kleidi技術(shù)實(shí)現(xiàn)PyTorch優(yōu)化

    PyTorch個(gè)廣泛應(yīng)用的開源機(jī)器學(xué)習(xí) (ML) 庫(kù)。近年來(lái),Arm 與合作伙伴通力協(xié)作,持續(xù)改進(jìn) PyTorch 的推理性能。本文將詳細(xì)介紹如何利用 Arm Kleidi 技術(shù)提升 Arm
    的頭像 發(fā)表于 12-23 09:19 ?186次閱讀
    利用Arm Kleidi技術(shù)<b class='flag-5'>實(shí)現(xiàn)</b><b class='flag-5'>PyTorch</b>優(yōu)化

    大語(yǔ)言模型優(yōu)化生成管理方法

    大語(yǔ)言模型的優(yōu)化生成管理是個(gè)系統(tǒng)工程,涉及模型架構(gòu)、數(shù)據(jù)處理、內(nèi)容控制、實(shí)時(shí)響應(yīng)以及倫理監(jiān)管等多個(gè)層面。以下,是對(duì)大語(yǔ)言模型優(yōu)化生成管理方法的梳理,由AI部落小編整理。
    的頭像 發(fā)表于 12-02 10:45 ?92次閱讀

    pytorch怎么在pycharm中運(yùn)行

    部分:PyTorch和PyCharm的安裝 1.1 安裝PyTorch PyTorch個(gè)開源的機(jī)器學(xué)習(xí)庫(kù),用于構(gòu)建和訓(xùn)練神經(jīng)
    的頭像 發(fā)表于 08-01 16:22 ?1479次閱讀

    如何在Tensorflow中實(shí)現(xiàn)反卷積

    在TensorFlow中實(shí)現(xiàn)反卷積(也稱為轉(zhuǎn)置卷積或分?jǐn)?shù)步長(zhǎng)卷積)是個(gè)涉及多個(gè)概念和步驟的過(guò)程。反卷積在深度學(xué)習(xí)領(lǐng)域,特別是在圖像分割、圖像超分辨率、以及生成模型(如生成對(duì)抗
    的頭像 發(fā)表于 07-14 10:46 ?644次閱讀

    PyTorch如何實(shí)現(xiàn)多層全連接神經(jīng)網(wǎng)絡(luò)

    PyTorch實(shí)現(xiàn)多層全連接神經(jīng)網(wǎng)絡(luò)(也稱為密集連接神經(jīng)網(wǎng)絡(luò)或DNN)是個(gè)相對(duì)直接的過(guò)程,涉及定義
    的頭像 發(fā)表于 07-11 16:07 ?1230次閱讀

    如何在PyTorch實(shí)現(xiàn)LeNet-5網(wǎng)絡(luò)

    PyTorch實(shí)現(xiàn)LeNet-5網(wǎng)絡(luò)個(gè)涉及深度學(xué)習(xí)基礎(chǔ)知識(shí)、PyTorch框架使用以及網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-11 10:58 ?811次閱讀

    pytorch中有神經(jīng)網(wǎng)絡(luò)模型嗎

    當(dāng)然,PyTorch個(gè)廣泛使用的深度學(xué)習(xí)框架,它提供了許多預(yù)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)模型。 PyTorch中的神經(jīng)網(wǎng)絡(luò)模型 1. 引言 深度學(xué)習(xí)是
    的頭像 發(fā)表于 07-11 09:59 ?708次閱讀

    PyTorch神經(jīng)網(wǎng)絡(luò)模型構(gòu)建過(guò)程

    PyTorch,作為個(gè)廣泛使用的開源深度學(xué)習(xí)庫(kù),提供了豐富的工具和模塊,幫助開發(fā)者構(gòu)建、訓(xùn)練和部署神經(jīng)網(wǎng)絡(luò)模型。在神經(jīng)網(wǎng)絡(luò)模型中,輸出層是尤為關(guān)鍵的部分,它負(fù)責(zé)將模型的預(yù)測(cè)結(jié)果以合適
    的頭像 發(fā)表于 07-10 14:57 ?511次閱讀

    PyTorch的介紹與使用案例

    學(xué)習(xí)領(lǐng)域的個(gè)重要工具。PyTorch底層由C++實(shí)現(xiàn),提供了豐富的API接口,使得開發(fā)者能夠高效地構(gòu)建和訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型。PyTorch
    的頭像 發(fā)表于 07-10 14:19 ?413次閱讀

    生成對(duì)抗網(wǎng)絡(luò)(GANs)的原理與應(yīng)用案例

    生成對(duì)抗網(wǎng)絡(luò)(Generative Adversarial Networks,GANs)是種由蒙特利爾大學(xué)的Ian Goodfellow等人在2014年提出的深度學(xué)習(xí)算法。GANs通過(guò)構(gòu)建兩個(gè)
    的頭像 發(fā)表于 07-09 11:34 ?1080次閱讀

    如何使用PyTorch建立網(wǎng)絡(luò)模型

    PyTorch個(gè)基于Python的開源機(jī)器學(xué)習(xí)庫(kù),因其易用性、靈活性和強(qiáng)大的動(dòng)態(tài)圖特性,在深度學(xué)習(xí)領(lǐng)域得到了廣泛應(yīng)用。本文將從PyTorch的基本概念、網(wǎng)絡(luò)模型構(gòu)建、優(yōu)化方法、實(shí)際
    的頭像 發(fā)表于 07-02 14:08 ?424次閱讀

    使用PyTorch構(gòu)建神經(jīng)網(wǎng)絡(luò)

    PyTorch個(gè)流行的深度學(xué)習(xí)框架,它以其簡(jiǎn)潔的API和強(qiáng)大的靈活性在學(xué)術(shù)界和工業(yè)界得到了廣泛應(yīng)用。在本文中,我們將深入探討如何使用PyTorch構(gòu)建神經(jīng)網(wǎng)絡(luò),包括從基礎(chǔ)概念到高級(jí)
    的頭像 發(fā)表于 07-02 11:31 ?728次閱讀

    神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些

    、語(yǔ)音識(shí)別、自然語(yǔ)言處理等多個(gè)領(lǐng)域。本文將對(duì)幾種主要的神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行詳細(xì)介紹,包括前饋神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、卷積神經(jīng)網(wǎng)絡(luò)生成對(duì)抗
    的頭像 發(fā)表于 07-01 14:16 ?723次閱讀

    深度學(xué)習(xí)生成對(duì)抗網(wǎng)絡(luò)GAN)全解析

    GANs真正的能力來(lái)源于它們遵循的對(duì)抗訓(xùn)練模式。生成器的權(quán)重是基于判別器的損失所學(xué)習(xí)到的。因此,生成器被它生成的圖像所推動(dòng)著進(jìn)行訓(xùn)練,很難知道生成
    發(fā)表于 03-29 14:42 ?4614次閱讀
    深度學(xué)習(xí)<b class='flag-5'>生成對(duì)抗</b><b class='flag-5'>網(wǎng)絡(luò)</b>(<b class='flag-5'>GAN</b>)全解析

    生成式人工智能和感知式人工智能的區(qū)別

    生成新的內(nèi)容和信息的人工智能系統(tǒng)。這些系統(tǒng)能夠利用已有的數(shù)據(jù)和知識(shí)來(lái)生成全新的內(nèi)容,如圖片、音樂、文本等。生成式人工智能通常基于深度學(xué)習(xí)技術(shù),如生成對(duì)抗
    的頭像 發(fā)表于 02-19 16:43 ?1792次閱讀
    主站蜘蛛池模板: 高h肉宠文1v1男男| 色婷婷777| 68日本 xxxxxxxxx| 男人的天堂欧美| 国产精品区在线12p| 日本69sexmovies| 91华人在线视频| 欧美人成a视频www| 中文字幕在线观看第一页| 亚洲成在| 日本黄在线| 久久综合综合久久| 成人免费看黄页网址大全| 在线黄色.com| 欧美一级片免费观看| 成人深夜视频| 亚洲性一区| 亚洲日本精品| 日本免费色网站| 狠狠色丁香婷婷综合久久来| www亚洲一区| 你懂得国产| 男人日女人的网站| www.99热.com| 色多多官网| 国产农村一级特黄α真人毛片| 夜夜夜夜夜夜夜猛噜噜噜噜噜噜 | 亚洲欧美日本综合| 三级理论手机在线观看视频| 久久国产三级| 午夜精品福利影院| 爱综合网| 中文字幕成人乱码在线电影| 日韩一级在线观看| 成年人网站免费观看| 久热操| 亚洲成人毛片| 色婷婷久| a级网| 1024你懂的在线播放欧日韩| 韩国理伦片在线观看2828|