在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習之后為何陷入了困境?

新機器視覺 ? 來源:datasciencecentral ? 2023-11-20 14:30 ? 次閱讀

來源:datasciencecentral 編譯:Min

我們被困住了,或者說至少我們已經停滯不前了。有誰還記得上一次一年沒有在算法芯片或數據處理方面取得重大顯著進展是什么時候?幾周前去參加Strata San Jose會議,卻沒有看到任何吸引眼球的新進展,這太不尋常了。 正如我之前所報告的那樣,似乎我們已經進入了成熟期,現在我們的主要工作目標是確保我們所有強大的新技術能夠很好地結合在一起(融合平臺),或者從那些大規模的VC投資中賺取相同的錢。

我不是唯一一個注意到這些的人。幾位與會者和參展商都和我說了非常類似的話。而就在前幾天,我收到了一個由知名研究人員組成的團隊的說明,他們一直在評估不同高級分析平臺的相對優點,并得出結論:沒有任何值得報告的差異。

我們為什么和在哪里陷入困境?

我們現在所處的位置其實并不差。我們過去兩三年的進步都是在深度學習和強化學習領域。深度學習在處理語音、文本、圖像和視頻方面給我們帶來了了不起的能力。再加上強化學習,我們在游戲、自主車輛、機器人等方面都有了很大的進步。 我們正處于商業爆炸的最早階段,基于諸如通過聊天機器人與客戶互動來節省大量資金、個人助理和Alexa等新的個人便利應用、個人汽車中的二級自動化,比如自適應巡航控制、事故避免制動和車道維護。 Tensorflow、Keras和其他深度學習平臺比以往任何時候都更容易獲得,而且由于GPU的存在,比以往任何時候都更高效。 但是,已知的缺陷清單根本沒有解決:

需要太多標簽化的訓練數據。

模型的訓練時間太長或者需要太多昂貴的資源,而且還可能根本無法訓練。

超參數,尤其是圍繞節點和層的超參數,仍然是神秘的。自動化甚至是公認的經驗法則仍然遙不可及。

遷移學習,意味著只能從復雜到簡單,而不是從一個邏輯系統到另一個邏輯系統。

我相信我們可以列一個更長的清單。正是在解決這些主要的缺點方面,我們已經陷入了困境。

是什么阻止了我們

在深度神經網絡中,目前的傳統觀點是,只要我們不斷地推動,不斷地投資,那么這些不足就會被克服。例如,從80年代到00年代,我們知道如何讓深度神經網絡工作,只是我們沒有硬件。一旦趕上了,那么深度神經網絡結合新的開源精神,就會打開這個新的領域。 所有類型的研究都有自己的動力。特別是一旦你在一個特定的方向上投入了大量的時間和金錢,你就會一直朝著這個方向前進。如果你已經投入了多年的時間來發展這些技能的專業知識,你就不會傾向于跳槽。 改變方向,即使你不完全確定應該是什么方向。 有時候我們需要改變方向,即使我們不知道這個新方向到底是什么。最近,領先的加拿大和美國AI研究人員做到了這一點。他們認為他們被誤導了,需要從本質上重新開始。 這一見解在去年秋天被Geoffrey Hinton口頭表達出來,他在80年代末啟動神經網絡主旨研究的過程中功不可沒。Hinton現在是多倫多大學的名譽教授,也是谷歌的研究員,他說他現在 "深深地懷疑 "反向傳播,這是DNN的核心方法。觀察到人腦并不需要所有這些標簽數據來得出結論,Hinton說 "我的觀點是把這些數據全部扔掉,然后重新開始"。 因此,考慮到這一點,這里是一個簡短的調查,這些新方向介于確定可以實現和幾乎不可能實現之間,但不是我們所知道的深度神經網的增量改進。 這些描述有意簡短,無疑會引導你進一步閱讀以充分理解它們。

看起來像DNN卻不是的東西

有一條研究路線與Hinton的反向傳播密切相關,即認為節點和層的基本結構是有用的,但連接和計算方法需要大幅修改。

我們從Hinton自己目前新的研究方向——CapsNet開始說起是很合適的。這與卷積神經網絡的圖像分類有關,問題簡單來說,就是卷積神經網絡對物體的姿勢不敏感。也就是說,如果要識別同一個物體,在位置、大小、方向、變形、速度、反射率、色調、紋理等方面存在差異,那么必須針對這些情況分別添加訓練數據。 在卷積神經網絡中,通過大量增加訓練數據和(或)增加最大池化層來處理這個問題,這些層可以泛化,但只是損失實際信息。 下面的描述是眾多優秀的CapsNets技術描述之一,該描述來自Hackernoon。

Capsule是一組嵌套的神經層。在普通的神經網絡中,你會不斷地添加更多的層。在CapsNet中,你會在一個單層內增加更多的層。或者換句話說,把一個神經層嵌套在另一個神經層里面。capsule里面的神經元的狀態就能捕捉到圖像里面一個實體的上述屬性。一個膠囊輸出一個向量來代表實體的存在。向量的方向代表實體的屬性。該向量被發送到神經網絡中所有可能的父代。預測向量是基于自身權重和權重矩陣相乘計算的。哪個父代的標量預測向量乘積最大,哪個父代就會增加膠囊的結合度。其余的父代則降低其結合度。這種通過協議的路由方式優于目前的max-pooling等機制。

CapsNet極大地減少了所需的訓練集,并在早期測試中顯示出卓越的圖像分類性能。

多粒度級聯森林

2月份,我們介紹了南京大學新型軟件技術國家重點實驗室的周志華和馮霽的研究,展示了他們稱之為多粒度級聯森林的技術。他們的研究論文顯示,多粒度級聯森林在文本和圖像分類上都經常擊敗卷積神經網絡和循環神經網絡。效益相當顯著。

只需要訓練數據的一小部分。

在您的桌面CPU設備上運行,無需GPU。

訓練速度一樣快,在許多情況下甚至更快,適合分布式處理。

超參數少得多,在默認設置下表現良好。

依靠容易理解的隨機森林,而不是完全不透明的深度神經網。

簡而言之,gcForest(多粒度級聯森林)是一種決策樹集合方法,其中保留了深網的級聯結構,但不透明的邊緣和節點神經元被隨機森林組與完全隨機的樹林配對取代。在我們的原文中閱讀更多關于gcForest的內容。

Pyro and Edward

Pyro和Edward是兩種新的編程語言,它們融合了深度學習框架和概率編程。Pyro是Uber和Google的作品,而Edward則來自哥倫比亞大學,由DARPA提供資金。其結果是一個框架,允許深度學習系統衡量他們對預測或決策的信心。 在經典的預測分析中,我們可能會通過使用對數損失作為健身函數來處理這個問題,懲罰有信心但錯誤的預測(假陽性)。到目前為止,還沒有用于深度學習的必然結果。 例如,這有望使用的地方是在自動駕駛汽車或飛機中,允許控制在做出關鍵或致命的災難性決定之前有一些信心或懷疑感。這當然是你希望你的自主Uber在你上車之前就知道的事情。 Pyro和Edward都處于開發的早期階段。

不像深網的方法

我經常會遇到一些小公司,他們的平臺核心是非常不尋常的算法。在我追問的大多數案例中,他們都不愿意提供足夠的細節,甚至讓我為你描述里面的情況。這種保密并不能使他們的效用失效,但是在他們提供一些基準和一些細節之前,我無法真正告訴你里面發生了什么。當他們最終揭開面紗的時候,就把這些當作我們未來的工作臺吧。 目前,我所調查的最先進的非DNN算法和平臺是這樣的。

層次時間記憶(HTM)

e5f986b4-8736-11ee-939d-92fbcf53809c.png

層次時間記憶(HTM)使用稀疏分布式表示法(SDR)對大腦中的神經元進行建模,并進行計算,在標量預測(商品、能源或股票價格等未來值)和異常檢測方面優于CNN和RNN。 這是Palm Pilot名宿Jeff Hawkins在其公司Numenta的奉獻作品。霍金斯在對大腦功能進行基礎研究的基礎上,追求的是一種強大的人工智能模型,而不是像DNN那樣用層和節點來結構。 HTM的特點是,它發現模式的速度非常快,只需1,000次觀測。這與訓練CNN或RNN所需的幾十萬或幾百萬次的觀測相比,簡直是天壤之別。 此外,模式識別是無監督的,并且可以根據輸入的變化來識別和概括模式的變化。這使得系統不僅訓練速度非常快,而且具有自學習、自適應性,不會被數據變化或噪聲所迷惑。

一些值得注意的漸進式改進

我們開始關注真正的游戲改變者,但至少有兩個漸進式改進的例子值得一提。這些顯然仍然是經典的CNN和RNNs,具有反向支撐的元素,但它們工作得更好

使用Google Cloud AutoML進行網絡修剪 谷歌和Nvidia的研究人員使用了一種名為網絡修剪的過程,通過去除對輸出沒有直接貢獻的神經元,讓神經網絡變得更小,運行效率更高。這一進步最近被推出,作為谷歌新的AutoML平臺性能的重大改進。

Transformer

e60e745c-8736-11ee-939d-92fbcf53809c.png

Transformer是一種新穎的方法,最初在語言處理中很有用,比如語言到語言的翻譯,這一直是CNNs、RNNs和LSTMs的領域。去年夏末由谷歌大腦和多倫多大學的研究人員發布,它在各種測試中都表現出了顯著的準確性改進,包括這個英語/德語翻譯測試。 RNNs的順序性使其更難充分利用現代快速計算設備(如GPU),因為GPU擅長的是并行而非順序處理。CNN比RNN的順序性要差得多,但在CNN架構中,隨著距離的增加,將輸入的遠端部分的信息組合起來所需的步驟數仍然會增加。 準確率的突破來自于 "自注意功能 "的開發,它將步驟大幅減少到一個小的、恒定的步驟數。在每一個步驟中,它都應用了一種自我關注機制,直接對一句話中所有詞之間的關系進行建模,而不管它們各自的位置如何。 就像VC說的那樣,也許是時候該換換口味了。

編輯:黃飛

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • cpu
    cpu
    +關注

    關注

    68

    文章

    10863

    瀏覽量

    211763
  • gpu
    gpu
    +關注

    關注

    28

    文章

    4740

    瀏覽量

    128948
  • 深度學習
    +關注

    關注

    73

    文章

    5503

    瀏覽量

    121162
  • cnn
    cnn
    +關注

    關注

    3

    文章

    352

    瀏覽量

    22215
  • 隨機森林
    +關注

    關注

    1

    文章

    22

    瀏覽量

    4270

原文標題:深度學習之后會是啥?

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之一,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度學習
    的頭像 發表于 11-14 15:17 ?572次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發表于 10-28 14:05 ?213次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發表于 10-27 11:13 ?398次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度
    的頭像 發表于 10-23 15:25 ?734次閱讀

    深度學習中的時間序列分類方法

    時間序列分類(Time Series Classification, TSC)是機器學習深度學習領域的重要任務之一,廣泛應用于人體活動識別、系統監測、金融預測、醫療診斷等多個領域。隨著深度
    的頭像 發表于 07-09 15:54 ?920次閱讀

    深度學習中的無監督學習方法綜述

    深度學習作為機器學習領域的一個重要分支,近年來在多個領域取得了顯著的成果,特別是在圖像識別、語音識別、自然語言處理等領域。然而,深度學習模型
    的頭像 發表于 07-09 10:50 ?730次閱讀

    深度學習與nlp的區別在哪

    深度學習和自然語言處理(NLP)是計算機科學領域中兩個非常重要的研究方向。它們之間既有聯系,也有區別。本文將介紹深度學習與NLP的區別。 深度
    的頭像 發表于 07-05 09:47 ?932次閱讀

    深度學習中的模型權重

    深度學習這一充滿無限可能性的領域中,模型權重(Weights)作為其核心組成部分,扮演著至關重要的角色。它們不僅是模型學習的基石,更是模型智能的源泉。本文將從模型權重的定義、作用、優化、管理以及應用等多個方面,深入探討
    的頭像 發表于 07-04 11:49 ?1303次閱讀

    深度學習常用的Python庫

    深度學習作為人工智能的一個重要分支,通過模擬人類大腦中的神經網絡來解決復雜問題。Python作為一種流行的編程語言,憑借其簡潔的語法和豐富的庫支持,成為了深度學習研究和應用的首選工具。
    的頭像 發表于 07-03 16:04 ?651次閱讀

    深度學習與傳統機器學習的對比

    在人工智能的浪潮中,機器學習深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于機器學習的范疇,但
    的頭像 發表于 07-01 11:40 ?1377次閱讀

    深度解析深度學習下的語義SLAM

    隨著深度學習技術的興起,計算機視覺的許多傳統領域都取得了突破性進展,例如目標的檢測、識別和分類等領域。近年來,研究人員開始在視覺SLAM算法中引入深度學習技術,使得
    發表于 04-23 17:18 ?1291次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學習</b>下的語義SLAM

    人才流失,被迫站隊,韓國半導體產業陷入困境

    近年來,韓國的記憶體芯片產業遭遇了重大挑戰,不僅面臨著來自美國和日本的人才挖角,還因加入美國對中國打壓的行列而導致出口額大幅下降。這些因素的疊加,讓韓國的半導體產業陷入了前所未有的困境。 據《觀察者
    的頭像 發表于 03-27 16:41 ?644次閱讀

    為什么深度學習的效果更好?

    導讀深度學習是機器學習的一個子集,已成為人工智能領域的一項變革性技術,在從計算機視覺、自然語言處理到自動駕駛汽車等廣泛的應用中取得了顯著的成功。深度
    的頭像 發表于 03-09 08:26 ?624次閱讀
    為什么<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的效果更好?

    TLE9879 blinky的測試程序陷入了無法初始化BOARD1的循環中怎么解決?

    )。 結果,blinky 的測試程序陷入了無法初始化 BOARD1 的循環中。 我可以在 Arduino 庫中更改這種行為還是必須調整默認固件?
    發表于 01-25 06:15

    什么是深度學習?機器學習深度學習的主要差異

    2016年AlphaGo 擊敗韓國圍棋冠軍李世石,在媒體報道中,曾多次提及“深度學習”這個概念。
    的頭像 發表于 01-15 10:31 ?1075次閱讀
    什么是<b class='flag-5'>深度</b><b class='flag-5'>學習</b>?機器<b class='flag-5'>學習</b>和<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的主要差異
    主站蜘蛛池模板: 日本丝瓜着色视频| 激情五月婷婷色| 免费在线观看的视频| 精品卡一卡二 卡四卡视频| 欧美成人精品| 五月激情综合婷婷| 天天操天天噜| 黄色一级大片视频| 国产色女人| 久久人人做人人玩人精品| 四虎影院久久久| 黄色大秀| www.碰| 手机看片久久青草福利盒子| 爱爱小说视频永久免费网站| 久久在精品线影院精品国产| 三级理论手机在线观看视频| 亚洲国产精品婷婷久久久久| 国产精品久久免费观看| 91在线免费视频| 国产成人啪午夜精品网站| 欧洲不卡一卡2卡三卡4卡网站| 中文字幕视频二区| 在线视频网址| 国产综合第一页在线视频| 天天黄色| 天天干天天爱天天射| 狠狠ri| 1000部禁片黄的免费看| 中文字幕1区2区| 亚洲аv电影天堂网| 婷婷综合激情网| 欧美一二三区| 毛片一区| 激情.com| 五月天婷婷影院| 天天伊人网| 午夜剧场官网| 成人国产永久福利看片| 久久久久激情免费观看| 国产成人精品日本亚洲语音1|