高級(jí)駕駛輔助系統(tǒng)(ADAS)開發(fā)中最關(guān)鍵的問題之一是汽車周圍環(huán)境的描述方式。環(huán)境可以分為動(dòng)態(tài)和靜態(tài)部分。第一個(gè)用于描述所有可移動(dòng)物體,如汽車或汽車等。行人。第二個(gè)代表靜態(tài)障礙物,如護(hù)欄、路緣石、建筑物或障礙物等。為了在擁擠的環(huán)境中自由移動(dòng),需要提供有關(guān)所有周圍障礙物的高精度信息。有一個(gè)可用于此目的的廣泛表示,即 2D和 3D 網(wǎng)格、區(qū)間圖、原始結(jié)構(gòu)和輪廓。
根據(jù)應(yīng)用,不同表示形式具有不同程度的復(fù)雜性。此外,大多數(shù)表示都依賴于傳感器。之所以如此,是因?yàn)橛糜趧?chuàng)建特定表示的算法依賴于傳感器的物理規(guī)格和限制,目前市場(chǎng)上可以找到使用雷達(dá)、攝像頭或激光雷達(dá)等傳感器的解決方案。然而,傳感器依賴性是一個(gè)不允許進(jìn)一步改進(jìn)的問題,可以通過直接使用來自不同類型傳感器的輸入來獲得。將來自各種傳感器的信息組合成一個(gè)表示的一種可能方法是占用網(wǎng)格,這種方法可以解釋為作為傳感器融合。不幸的是,由于內(nèi)存和處理能力有限,占用網(wǎng)格并不是嵌入式系統(tǒng)的最佳解決方案。
此外,將網(wǎng)格作為一組單元格的原始表示形式,填充了簡單的占用概率,并不是真正有用的用于后續(xù)的上層 ADAS 感知算法。由于數(shù)據(jù)量很大且接口帶寬有限,因此無法通過 CAN 等常見汽車接口輕松發(fā)送。這可以通過在占用之間添加一層參數(shù)化自由空間Parametric Free Space,PFS(PFS 通過參數(shù)化方法描述已知沒有障礙物的區(qū)域的邊界曲線,這種對(duì)主車靜止環(huán)境的緊湊描述可以有多種形式,這種描述的一種靈活而緊湊的形式稱為參數(shù)自由空間)來消除這些復(fù)雜網(wǎng)格的對(duì)應(yīng)數(shù)據(jù)位(如下圖),這樣可以提供周圍環(huán)境的緊湊描述。
?
簡而言之,PFS 確定包括兩個(gè)主要步驟。PFS 的輸入是占用網(wǎng)格,該算法從使用圖像處理技術(shù)進(jìn)行網(wǎng)格預(yù)置開始,結(jié)果是生成一組代表自由空間邊界的網(wǎng)格單元。然后對(duì)這些單元進(jìn)行近似最終結(jié)果的一組預(yù)定義數(shù)量的控制點(diǎn),代表給定次數(shù)的樣條曲線,這樣可以很容易地被后續(xù)ADAS算法使用。
問題描述
在汽車行業(yè)中,所有感知算法都是循環(huán)執(zhí)行的,并且必須在預(yù)定義長度的時(shí)隙(例如 50 ms)內(nèi)處理當(dāng)前輸入,當(dāng)前,有多種方法可以滿足嚴(yán)格的實(shí)時(shí)要求。第一個(gè)想到的想法,就是使用更好的CPU單元。這樣的解決方案并不令人滿意,因?yàn)樗鼤?huì)產(chǎn)生相當(dāng)大的成本,從而降低產(chǎn)品的競(jìng)爭力?;谀柖缮峡?,即使成本不會(huì)成為問題,有些算法根本無法達(dá)到時(shí)間限制,這意味著最合理的解決辦法是算法優(yōu)化。
本文不關(guān)注代碼實(shí)現(xiàn)形式的優(yōu)化問題,而是關(guān)注一般方法。討論的參數(shù)化可行使空間檢測(cè) PFS 確定算法是從圖像處理操作開始,將其輸入占用網(wǎng)格轉(zhuǎn)換為一個(gè)二進(jìn)制文件,這些文件中僅限制目標(biāo)周圍自由區(qū)域的單元具有非零值,所有其他單元均為零。由于在自由區(qū)域中,代表該邊界的像素?cái)?shù)量不是固定的,它可以在周期和場(chǎng)景之間變化(如下圖a)。這里假設(shè)設(shè)置可行駛區(qū)域的單元方式構(gòu)成是由有序像素的組成方式來進(jìn)行連接閉合邊界。
邊界單元的動(dòng)態(tài)數(shù)量
在處理的第二階段,邊界像素集是用參數(shù)樣條曲線進(jìn)行近似的。這種近似可能產(chǎn)生以下負(fù)擔(dān):不必要的高計(jì)算復(fù)雜度,因?yàn)橥ǔ4蠖鄶?shù)像素不提供附加信息的。而且,在每個(gè)計(jì)算周期,邊界點(diǎn)的數(shù)量可能不同。如上圖b表示不太擁擠的道路環(huán)境將有更多的自由空間,因此邊界由更多的單元組成。
由于測(cè)量尺寸(邊界像素的數(shù)量)沒有嚴(yán)格定義的上限,因此需要在內(nèi)存中保留足夠多的空間來滿足所有可能的情況。此外,邊界像素的數(shù)量在每個(gè)周期之間可能會(huì)有所不同。這些方面在嵌入式系統(tǒng)中并不受歡迎(大多數(shù)嵌入式系統(tǒng)甚至不允許動(dòng)態(tài)內(nèi)存分配)。
一旦完成圖像處理并確定邊界像素,單元定義的邊界將通過參數(shù)曲線(b 樣條曲線)來近似。它由狀態(tài)空間模型表示為:
?
其中,
表示觀測(cè)矩陣,其中的q表示為:
是作為一組2維B樣條控制點(diǎn)的狀態(tài)向量,Nq是控制點(diǎn)的數(shù)量,Nm是測(cè)量點(diǎn)的數(shù)量,qx,n表示第n個(gè)控制點(diǎn)的縱向位置,qy,n表示第n 個(gè)控制點(diǎn)的橫向位置。
使用信息濾波器在每個(gè)周期遞歸地完成近似,這對(duì)于大量測(cè)量點(diǎn)而言比經(jīng)典卡爾曼濾波器計(jì)算效率更高。即使進(jìn)行了這種優(yōu)化,大量測(cè)量仍然是一個(gè)問題(模型被視為單個(gè) 2D 測(cè)量,并用于更新兩個(gè)樣條函數(shù)x(s)和 y(s)。此外,為了能夠使用信息過濾器,必須預(yù)先在每個(gè)循環(huán)進(jìn)行計(jì)算觀測(cè)矩陣H(s),其大?。ㄐ袛?shù))嚴(yán)格取決于測(cè)量次數(shù)。
針對(duì)一般點(diǎn)云的數(shù)據(jù)縮減,人們提出了許多方法。比如,通過基于所需點(diǎn)數(shù)縮減的比率搜索點(diǎn)子集來實(shí)現(xiàn)。
本文介紹的方法最小化了原始集和縮減子集之間的幾何偏差。還有另一種方法由兩個(gè)步驟組成。第一步,通過八叉樹結(jié)構(gòu)對(duì)點(diǎn)云進(jìn)行正則化和壓縮。第二步,點(diǎn)云根據(jù)曲率規(guī)則進(jìn)行簡化。這種方法與八叉樹結(jié)構(gòu)有一些相似之處。還有一些基于kmeans聚類算法的自適應(yīng)簡化方法。唯一的數(shù)據(jù)縮減(向下選擇)在曲線擬合上下文中找到的算法是“正切函數(shù)”專用于非均勻有理B樣條 (NURBS) 近似的方法”。
在該方法中,向下選擇步驟包括三個(gè)連續(xù)原始測(cè)量點(diǎn)的局部二次插值,以查找沿定義的二次插值的斜率符號(hào)的變化空間軸。如果檢測(cè)到斜率變化,則向下選擇最近的測(cè)量點(diǎn),然后將其做為 NURBS 的控制點(diǎn)。否則,不向下選擇任何測(cè)量點(diǎn)。
解決方案
為了解決上一節(jié)中描述的大量測(cè)量的問題,這里提出了三種測(cè)量下選算法。
1、測(cè)量點(diǎn)分布均勻
PFS算法的一個(gè)假設(shè)是所有測(cè)量點(diǎn)均勻分布。這意味著樣條曲線和測(cè)量點(diǎn)的起點(diǎn)和終點(diǎn)相對(duì)應(yīng)。基于此,最簡單(樸素)的下選算法是取每個(gè)第k測(cè)量點(diǎn)(mx,k,my,k),并根據(jù)以下公式:
該解決方案的缺點(diǎn)是它強(qiáng)制樣條線的每個(gè)控制點(diǎn)只有一個(gè)測(cè)量點(diǎn),這可能不足以準(zhǔn)確反映周圍環(huán)境。
2、“Line”向下選擇
本段和下一段中描述的算法集中于以下思想:僅保留行測(cè)量的特征點(diǎn),并過濾掉所有冗余的點(diǎn),即那些不提供有關(guān)邊界形狀的有價(jià)值信息的點(diǎn)。
“線”向下選擇是通過使用線性方程y=ax+b來過濾特征點(diǎn)(即單元格表示形式),其想法是拒絕盡可能多的共線點(diǎn)。整個(gè)邊界被分為相同長度的部分,部分端點(diǎn)是用虛擬線連接。
然后,對(duì)于該部分(其端點(diǎn)之間)內(nèi)的每個(gè)點(diǎn)(像素),計(jì)算到該線的距離(例如下圖中綠色特征點(diǎn)連接的紅線部分)。如果該點(diǎn)的距離較大于閾值,該點(diǎn)被視為特征點(diǎn)。
所有比該閾值更接近直線的像素都被認(rèn)為是冗余的。一段的每個(gè)終點(diǎn)也是下一段的起點(diǎn),也被視為特征點(diǎn),保留這些點(diǎn)的好處是每個(gè)樣條控制點(diǎn)(假設(shè)截面長度足夠小)至少有一個(gè)支撐測(cè)量點(diǎn)。該算法通過尋找部分端點(diǎn)之間的特定點(diǎn)來擴(kuò)展簡單統(tǒng)一方法。
3、邊界方向的下采樣
為了限制額外操作的數(shù)量,尋找特征點(diǎn),基于“方向”的方法僅限于對(duì)像素進(jìn)行簡單操作。其想法是檢查從前一個(gè)像素到感興趣像素的移動(dòng)方向是否正確。并且從感興趣的像素到下一個(gè)像素,按照該順序,是相同的。如果不同,則中間點(diǎn)被視為特征點(diǎn)。例如,如果所考慮的點(diǎn)之前和之后的移動(dòng)方向是往右上角(見下圖所示)的,則該點(diǎn)不被標(biāo)記為特征點(diǎn)。但如果連續(xù)移動(dòng)方向不同,則該點(diǎn)被標(biāo)記為特征點(diǎn)。
算法優(yōu)勢(shì)的不同維度對(duì)比
為了避免操作系統(tǒng)對(duì)計(jì)算時(shí)間估算的影響,需要重復(fù)測(cè)試多次并取平均值。最終的計(jì)算時(shí)間在下一節(jié)中給出,是所有場(chǎng)景中最長的時(shí)間。比較最長時(shí)間而不是平均值更有價(jià)值,因?yàn)闊o論汽車周圍環(huán)境多么復(fù)雜,每種算法都應(yīng)該在有限的時(shí)間內(nèi)完成其工作。
1、降采樣大小
如下圖表示包含每種方法每個(gè)周期的平均測(cè)量點(diǎn)數(shù)量。正如預(yù)期的那樣,與不使用降選方法相比,Original表示所提出的下采樣方法中每個(gè)周期的平均測(cè)量點(diǎn)數(shù)量。本文提出的方法顯著減少了測(cè)量點(diǎn)的數(shù)量,“Uniform”算法平均值減少了 16.74 倍,基于“Line”的算法平均值減少了 11.61,基于“Direction”方法則只有 2.15。
因此,大多數(shù)點(diǎn)都是使用“Uniform”方法過濾的。過濾的點(diǎn)數(shù)正好是使用的樣條控制點(diǎn)的數(shù)量(即100)?!癓ine”方法作為前一種方法的擴(kuò)展,添加了重要的點(diǎn)。這兩種方法比前一種方法要好得多?!癉irection”方法僅將測(cè)量點(diǎn)的數(shù)量減少大約 2 倍。其主要原因是該方法實(shí)際上表現(xiàn)得更像插值器,因此它不能很好地處理噪聲數(shù)據(jù),在這種情況下,噪聲數(shù)據(jù)可能是一個(gè)復(fù)雜的邊界形狀。
2、計(jì)算時(shí)間
正如第一段所述,主要目標(biāo)是減少計(jì)算時(shí)間,以滿足算法執(zhí)行的實(shí)時(shí)性要求,耗時(shí)比較如下表2所示。
表2的每一行都顯示了測(cè)試方法的結(jié)果,表中只列出了下選影響的PFS算法階段,乍一看,所提出的解決方案比原始算法至少快1.38倍。在觀測(cè)矩陣計(jì)算中尤其明顯,更少的測(cè)量次數(shù)有助于將該階段的運(yùn)行時(shí)間提高 14 倍。
3、準(zhǔn)確性/質(zhì)量比較
由于PFS是主動(dòng)安全系統(tǒng)的一部分,所以可以用分類器來評(píng)價(jià),我們可以采用完整的(不是下選的)一組邊界像素為參考,則每個(gè)逼近樣條的點(diǎn)都可以落入以下事件之一:
TP 真陽性 — 偏差(樣條點(diǎn)與相應(yīng)邊界點(diǎn)之間的距離)低于定義的最大允許偏差。
FN 假陰性 — 樣條點(diǎn)超出參考邊界像素之外的最大允許偏差。
FP 誤報(bào) — 樣條點(diǎn)超出最大允許偏差但在參考邊界像素內(nèi)。
根據(jù)上述事件,計(jì)算以下指標(biāo):
TPR 真陽性率 — 衡量正確識(shí)別的實(shí)際陽性結(jié)果的百分比。
PPV:陽性預(yù)測(cè)值 — 定義測(cè)量的性能。
F1:F1 分?jǐn)?shù) — 是分類準(zhǔn)確性(包括精確率和召回率)的綜合衡量標(biāo)準(zhǔn)。
? ?
樣條采樣示例——縱向部分
使用上述指標(biāo)的目的是從安全角度評(píng)估道路基礎(chǔ)設(shè)施分類結(jié)果,顯然,障礙物被錯(cuò)誤分類為自由空間,比自由空間分類為障礙物更危險(xiǎn)。
4、自由空間估計(jì)精度
使用一組 20 個(gè)不同的場(chǎng)景日志進(jìn)行精度分析,并使用每種下采樣算法重新模擬。由算法的圖像處理部分生成的測(cè)量點(diǎn)集用作參考。這是一個(gè)足夠多的選擇,因?yàn)槊總€(gè)所提出的方法不會(huì)影響原始測(cè)量點(diǎn)集,而只會(huì)執(zhí)行下選擇。為進(jìn)行比較而進(jìn)行的整個(gè)統(tǒng)計(jì)分析依賴于這樣的假設(shè):生成的樣條是在與邊界像素向量具有相同分布的點(diǎn)處進(jìn)行采樣的。因此,如果邊界由 321 個(gè)點(diǎn)組成,用于樣條更新,則樣條會(huì)在沿整個(gè)長度均勻分布的 321 個(gè)點(diǎn)中采樣(如上圖)。對(duì)于每個(gè)點(diǎn),計(jì)算與參考的偏差進(jìn)行最終匯總。如下圖顯示了所有算法的誤差累積分布。
正如預(yù)期的那樣,根據(jù)所使用的測(cè)量點(diǎn)的數(shù)量,基于“Direction”的算法獲得了最好的結(jié)果,基于“Uniform”算法獲得了最差的幾何近似值。為了決定應(yīng)該采取哪種解決方案,讓我們考慮兩個(gè)質(zhì)量因子Qtime,它更關(guān)注計(jì)算時(shí)間Qmemory,它專注于內(nèi)存計(jì)算。在這兩種情況下,值越高表示結(jié)果越好。
Xref,k - 參考點(diǎn)的縱向位置(像素中心) yref,k - 參考點(diǎn)的橫向位置(像素中心) Xspline,k - 樣條線采樣點(diǎn)的縱向位置 對(duì)應(yīng)于Xref,k,yspline,k- 樣條線樣本點(diǎn)的橫向位置對(duì)應(yīng)于yref,k。 K - 點(diǎn)索引 Mi- 第 i個(gè)周期的參考點(diǎn)(像素)數(shù)量(周期之間有所不同) N - 周期數(shù)(來自所有使用的日志) T - 每個(gè)周期的平均計(jì)算時(shí)間 Nall - 所有測(cè)量點(diǎn)的數(shù)量
Nreduce - 減少的測(cè)量點(diǎn)數(shù)量
總結(jié)
參數(shù)曲線可以是智能汽車感知系統(tǒng)中自由空間邊界的緊湊表示。在這樣的應(yīng)用中,它通常通過占用網(wǎng)格上自由空間和占用空間之間的邊界的近似來獲得。近似這種邊界處理的現(xiàn)有算法具有大量必須處理的測(cè)量點(diǎn)(也即網(wǎng)格單元)。實(shí)際上,其中許多點(diǎn)是冗余的并且不添加任何信息。為了降低對(duì)處理能力的需求,一般可以拒絕對(duì)這些冗余點(diǎn)進(jìn)行進(jìn)一步處理,也不會(huì)降低近似的質(zhì)量。本文介紹了幾種可以達(dá)到這一目標(biāo)的下采樣算法,所有算法都使用通用的統(tǒng)計(jì)指標(biāo)進(jìn)行比較。算法性能的比較是在代表不同道路場(chǎng)景的數(shù)十條日志的基礎(chǔ)上進(jìn)行的。
實(shí)驗(yàn)表明并證明,對(duì)于使用所提出的方法的所有測(cè)試用例,PFS 計(jì)算中的運(yùn)行時(shí)間和內(nèi)存需求都可以顯著降低,同時(shí)可以保持性能(準(zhǔn)確性)。這對(duì)于資源有限的汽車嵌入式系統(tǒng)非常重要。所提出的下選算法在數(shù)據(jù)減少、執(zhí)行時(shí)間、準(zhǔn)確性和安全性方面進(jìn)行了比較??傮w而言,“線”算法是最有前途的一種。它提供了算法效率(即時(shí)間/內(nèi)存消耗)和性能(準(zhǔn)確性)之間的最佳平衡。對(duì)于未來的工作中,人們可以研究整個(gè)處理流程的其他步驟,特別是圖像預(yù)處理步驟等方向,因?yàn)樗匀皇亲詈臅r(shí)的部分。
審核編輯:劉清
-
傳感器
+關(guān)注
關(guān)注
2551文章
51099瀏覽量
753570 -
圖像處理
+關(guān)注
關(guān)注
27文章
1292瀏覽量
56745 -
激光雷達(dá)
+關(guān)注
關(guān)注
968文章
3972瀏覽量
189923 -
ADAS系統(tǒng)
+關(guān)注
關(guān)注
4文章
226瀏覽量
25697 -
pfs
+關(guān)注
關(guān)注
0文章
5瀏覽量
5079
原文標(biāo)題:一種優(yōu)化Freespace檢測(cè)效能的智駕感知提升算法
文章出處:【微信號(hào):阿寶1990,微信公眾號(hào):阿寶1990】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論