金屬納米顆粒低聚體不僅具有等離激元共振效應實現(xiàn)光場亞波長范圍內的局域化和增強,還可以通過泄漏光場(leaky field)相互干涉實現(xiàn)法諾共振和連續(xù)態(tài)中的束縛態(tài)(BIC)從而使得電磁場更強的局域和增強。
據(jù)麥姆斯咨詢報道,近期,南京大學電子科學與工程學院的科研團隊在《物理學報》期刊上發(fā)表了以“基于納米金屬陣列天線的石墨烯/硅近紅外探測器”為主題的文章。該文章第一作者為張逸飛,通訊作者為王軍轉。
本工作采用金納米金屬低聚體超構表面作為石墨烯/硅(SOI)近紅外探測器的天線,實現(xiàn)了光響應度2倍的增強。通過時域有限差分法(FDTD)仿真和實驗相結合研究了低聚體超構表面光電耦合效率的動態(tài)過程,為提高光電探測效率提供了一種重要的途徑。
器件和納米結構制備
器件制備流程如圖1所示,選用厚度為1 μm的n型輕摻雜(摻雜濃度約3x101? at./cm3)SOI作為襯底,通過光刻圖形化和反應耦合等離子體(ICP)刻蝕技術制備出200 μm x 200 μm的硅島如圖1(a)所示,再通過光刻圖形化和電子束蒸發(fā)技術(EBE)在硅島上實現(xiàn)做好一對電極(5 nm Ti/45 nm Au),如圖1(b),其中一個電極和硅島接觸,另一個電極在絕緣層襯底上與后續(xù)轉移的石墨烯相接觸;接下來通過電子束曝光的方式(EBL)圖形天線納米顆粒并采用EBE蒸金屬5 nm Ti/45 nm Au并剝離,如圖1(c),最后將化學氣相沉淀方法生長的(CVD)石墨烯通過濕法轉移的方法轉移到硅島上面,并采用刻蝕方法將石墨烯和與硅接觸的電極斷開,這樣整個石墨烯/硅肖特基器件制備完成如圖1(d)所示,器件顯微鏡照片如圖1(e)所示,石墨烯形狀完好,沒有破裂。
圖1 納米天線器件制備流程示意圖
圖2(a)為制備的納米天線陣列示意圖,夾角為θ,每個陣列大小約10 μm,天線正方形邊長為250 nm,周期為1750 nm,圖2(c)和(d)為θ等于0°和40°的納米天線的掃描電鏡圖片。
圖2 納米天線陣列SEM表征圖
納米陣列等離激元對光電探測增強效果
首先,對器件進行了微區(qū)光電流測試,測試的光路圖如圖3(a)所示,850 nm激光通過20倍物鏡聚焦照射在器件上,光斑直徑大小約1 μm,通過偏振片調節(jié)激光的線偏振方向和納米結構x軸方向一致,如圖2(a)所示x方向(與納米結構中心軸y水平垂直)。研究人員測試了器件的暗電流,有納米天線和沒有納米天線的暗電流基本一致(如圖3(a)),可見曲線是典型的背靠背肖特基的電流電壓特性曲線,金和硅以及硅和石墨烯都形成了肖特基接觸。隨后,挑選了納米天線夾角為0°的納米顆粒陣列研究光電流增強情況,圖3(d)給出了有無納米天線的器件,在改變激光功率時光電流變化趨勢,隨著功率從0.03 mW增加到1.86 mW,光電流逐漸增加并趨向飽和達到1.05 x 10?? A,而沒有天線的石墨烯/硅探測區(qū)域光電流為5.45 x 10?? A,天線對光電流增強約2倍,有天線時光電流響應度為56 mA/W,相比商用的PIN結構硅探測器響應度低近一個數(shù)量級。在這里主要關注天線對探測性能提高的影響,沒有在器件結構上做進一步的優(yōu)化。
圖3 具有納米天線結構的器件光電流表征
圖4(a)給出了制備出的器件暗場的照片,為了研究顆粒間距以及周期和夾角對探測效果的影響,設計了三個區(qū)域的天線,分別為周期為1.2 μm納米顆粒間距為40 nm和100 nm的Ⅰ和Ⅱ區(qū),周期為1.75 μm納米顆粒間距為40 nm的Ⅲ區(qū),每一個區(qū)域從右到左,由上到下,夾角θ如圖中所標注從0°到40°。圖4(b)給出了1 mW 850 nm激光輻照下的光電流掃描圖,從圖中可見有納米天線的探測區(qū)域光電流明顯高于無納米線天線的區(qū)域,周期為1.2 μm間距為100 nm的納米顆粒陣列區(qū)域整體上光電流更大一些。
當研究納米結構天線隨著角度的變化對光電流強度影響規(guī)律時,發(fā)現(xiàn)角度增大過程中,整體上光電流不斷增大,直到θ為40°達到最大,隨后減小,最大增幅約為14%。然而,三種結構中一致地出現(xiàn)在θ為20°時,光電流隨夾角變化存在一個谷,而此時光電流大小與夾角為0°時相當,如圖4(c)所示。
圖4 不同夾角納米天線陣列的光電流表征
夾角對天線效果影響以及仿真結果
為了進一步理解光電流隨夾角變化這一現(xiàn)象背后的物理過程,采用Lumerical中時域有限差分法(FDTD)進行仿真工作。圖5(a)分別為該結構夾角θ從0°到40°的透射和吸收譜圖,透射譜可以看到明顯的法諾共振。當兩個納米顆粒靠近時,在光場激勵下形成兩個極化子(dipole),類似當氫原子靠近時軌道雜化一樣,兩個dipole進行雜化形成了成鍵和反成鍵態(tài),而多個顆粒就形成了多體耦合結構(多聚體)。這樣強耦合體系向平面泄露或者輻射光將會產(chǎn)生干涉形成新的分立的泄露模式,該模式和納米顆粒等離激元模式相耦合產(chǎn)生法諾共振。從仿真結果看,隨著角度增加,共振峰位以及強度沒有明顯變化;如圖5(b)所示,夾角為16°和20°共振譜形,該譜形具有非對稱的結構,類似法諾共振耦合譜,主峰附近低能量的振蕩峰與多體耦合相關。
圖5 納米天線透射光譜和和夾角關系
結論和討論
基于石墨烯/硅肖特基探測器研究了金屬納米結構等離激元天線的夾角對光場增強的影響,整體上天線對光響應度實現(xiàn)了兩倍的增強。當夾角從0°到90°變化時,光電流先增大,后來趨向飽和,當該夾角為40°時,光電流達到最大值,對應法諾共振最大的透射率,此時天線不僅匯聚光場能量還定向發(fā)射給探測器;當該夾角為20°時,光電流出現(xiàn)一個低谷,此時能量局域于低聚體內,金屬損耗減弱了等離激元增強效果??梢赃M一步推測,泄漏場的干涉有望實現(xiàn)BIC,從而輻射能量得以消除,將能量集中于結構內,然而由于金屬材料損耗比較大,又由于襯底介電常數(shù)以及吸收特性,無法進一步得到BIC現(xiàn)象。該工作通過時域有限差分法仿真和實驗相結合研究了多個納米顆粒組成的多聚體超構表面光電耦合效率的動態(tài)過程,為提高光電探測效率提供了一種重要的途徑。
審核編輯:劉清
-
紅外探測器
+關注
關注
5文章
289瀏覽量
18092 -
電流電壓
+關注
關注
0文章
203瀏覽量
11886 -
納米天線
+關注
關注
0文章
4瀏覽量
7986 -
光電流
+關注
關注
0文章
19瀏覽量
7892
原文標題:基于納米金屬陣列天線的石墨烯/硅近紅外探測器
文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論