在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

小紅書搜索團隊研究新框架:負樣本在大模型蒸餾中的重要性

深度學習自然語言處理 ? 來源:小紅書技術REDtech ? 2024-01-30 10:37 ? 次閱讀

大語言模型(LLMs)在各種推理任務上表現優異,但其黑盒屬性和龐大參數量阻礙了它在實踐中的廣泛應用。特別是在處理復雜的數學問題時,LLMs 有時會產生錯誤的推理鏈。傳統研究方法僅從正樣本中遷移知識,而忽略了那些帶有錯誤答案的合成數據。

在 AAAI 2024 上,小紅書搜索算法團隊提出了一個創新框架,在蒸餾大模型推理能力的過程中充分利用負樣本知識。負樣本,即那些在推理過程中未能得出正確答案的數據,雖常被視為無用,實則蘊含著寶貴的信息

論文提出并驗證了負樣本在大模型蒸餾過程中的價值,構建一個模型專業化框架:除了使用正樣本外,還充分利用負樣本來提煉 LLM 的知識。該框架包括三個序列化步驟,包括負向協助訓練(NAT)負向校準增強(NCE)動態自洽性(ASC),涵蓋從訓練到推理的全階段過程。通過一系列廣泛的實驗,我們展示了負向數據在 LLM 知識蒸餾中的關鍵作用。

如今,在思維鏈(CoT)提示的幫助下,大語言模型(LLMs)展現出強大的推理能力。然而,思維鏈已被證明是千億級參數模型才具有的涌現能力。這些模型的繁重計算需求和高推理成本,阻礙了它們在資源受限場景中的應用。因此,我們研究的目標是使小模型能夠進行復雜的算術推理,以便在實際應用中進行大規模部署。

知識蒸餾提供了一種有效的方法,可以將 LLMs 的特定能力遷移到更小的模型中。這個過程也被稱為模型專業化(model specialization),它強制小模型專注于某些能力。先前的研究利用 LLMs 的上下文學習(ICL)來生成數學問題的推理路徑,將其作為訓練數據,有助于小模型獲得復雜推理能力。然而,這些研究只使用了生成的具有正確答案的推理路徑(即正樣本)作為訓練樣本,忽略了在錯誤答案(即負樣本)的推理步驟中有價值的知識。

16b3e570-b6a2-11ee-8b88-92fbcf53809c.png

如圖所示,表 1 展示了一個有趣的現象:分別在正、負樣本數據上訓練的模型,在 MATH 測試集上的準確答案重疊非常小。盡管負樣本訓練的模型準確性較低,但它能夠解決一些正樣本模型無法正確回答的問題,這證實了負樣本中包含著寶貴的知識。此外,負樣本中的錯誤鏈路能夠幫助模型避免犯類似錯誤。另一個我們應該利用負樣本的原因是 OpenAI 基于 token 的定價策略。即使是 GPT-4,在 MATH 數據集上的準確性也低于 50%,這意味著如果僅利用正樣本知識,大量的 token 會被浪費。因此,我們提出:相比于直接丟棄負樣本,更好的方式是從中提取和利用有價值的知識,以增強小模型的專業化。

模型專業化過程一般可以概括為三個步驟:

1)思維鏈蒸餾(Chain-of-Thought Distillation),使用 LLMs 生成的推理鏈訓練小模型。

2)自我增強(Self-Enhancement),進行自蒸餾或數據自擴充,以進一步優化模型。

3)自洽性(Self-Consistency)被廣泛用作一種有效的解碼策略,以提高推理任務中的模型性能。

在這項工作中,我們提出了一種新的模型專業化框架,該框架可以全方位利用負樣本,促進從 LLMs 提取復雜推理能力。

我們首先設計了負向協助訓練(NAT)方法,其中 dual-LoRA 結構被設計用于從正向、負向兩方面獲取知識。作為一個輔助模塊,負向 LoRA 的知識可以通過校正注意力機制,動態地整合到正向 LoRA 的訓練過程中。

對于自我增強,我們設計了負向校準增強(NCE),它將負向輸出作為基線,以加強關鍵正向推理鏈路的蒸餾。

除了訓練階段,我們還在推理過程中利用負向信息。傳統的自洽性方法將相等或基于概率的權重分配給所有候選輸出,導致投票出一些不可靠的答案。為了緩解該問題,提出了動態自洽性(ASC)方法,在投票前進行排序,其中排序模型在正負樣本上進行訓練的。

我們提出的框架以 LLaMA 為基礎模型,主要包含三個部分,如圖所示:

步驟 1 :對負向 LoRA 進行訓練,通過合并單元幫助學習正樣本的推理知識;

步驟 2 :利用負向 LoRA 作為基線來校準自我增強的過程;

步驟 3 :在正樣本和負樣本上訓練排名模型,在推理過程中根據其得分,自適應地對候選推理鏈路進行加權。

16c463dc-b6a2-11ee-8b88-92fbcf53809c.png

2.1負向協助訓練(NAT)

我們提出了一個兩階段的負向協助訓練(NAT)范式,分為負向知識吸收動態集成單元兩部分:

2.1.1負向知識吸收

通過在負數據上最大化以下期望,負樣本的知識被 LoRA 吸收。在這個過程中,LLaMA 的參數保持凍結。

16cf6124-b6a2-11ee-8b88-92fbcf53809c.png

2.1.2 動態集成單元

由于無法預先確定擅長哪些數學問題,我們設計了如下圖所示的動態集成單元,以便在學習正樣本知識的過程中,動態集成來自的知識:

16d3f16c-b6a2-11ee-8b88-92fbcf53809c.png

我們凍結以防止內部知識被遺忘,并額外引入正 LoRA 模塊。理想情況下,我們應該正向集成正負 LoRA 模塊(在每個 LLaMA 層中輸出表示為與),以補充正樣本中所缺乏但對應所具有的有益知識。當 包含有害知識時,我們應該對正負 LoRA 模塊進行負向集成,以幫助減少正樣本中可能的不良行為。

我們提出了一種糾正注意力機制來實現這一目標,如下所示:

16deeca2-b6a2-11ee-8b88-92fbcf53809c.png

16e2d27c-b6a2-11ee-8b88-92fbcf53809c.png

我們使用作為查詢來計算和的注意力權重。通過在添加校正項 [0.5;-0.5],的注意力權重被限制在 [-0.5,0.5] 的范圍內,從而實現了在正、負兩個方向上自適應地集成來自的知識的效果。最終,和 LLaMA 層輸出的總和形成了動態集成單元的輸出。

2.2負向校準增強(NCE)

為了進一步增強模型的推理能力,我們提出了負校準增強(NCE),它使用負知識來幫助自我增強過程。我們首先使用 NAT 為中的每個問題生成對作為擴充樣本,并將它們補充到訓練數據集中。對于自蒸餾部分,我們注意到一些樣本可能包含更關鍵的推理步驟,對提升模型的推理能力至關重要。我們的主要目標是確定這些關鍵的推理步驟,并在自蒸餾過程中加強對它們的學習。

考慮到 NAT 已經包含了的有用知識,使得 NAT 比推理能力更強的因素,隱含在兩者之間不一致的推理鏈路中。因此,我們使用 KL 散度來測量這種不一致性,并最大化該公式的期望:

16ed82bc-b6a2-11ee-8b88-92fbcf53809c.png

16f7df64-b6a2-11ee-8b88-92fbcf53809c.png

16fb9190-b6a2-11ee-8b88-92fbcf53809c.png

β 值越大,表示兩者之間的差異越大,意味著該樣本包含更多關鍵知識。通過引入 β 來調整不同樣本的損失權重,NCE 將能夠選擇性地學習并增強 NAT 中嵌入的知識。

2.3動態自洽性(ASC)

自洽性(SC)對于進一步提高模型在復雜推理中的表現是有效的。然而,當前的方法要么為每個候選者分配相等的權重,要么簡單地基于生成概率分配權重。這些策略無法在投票階段根據 (r?, y?) 的質量調整候選權重,這可能會使正確候選項不易被選出。為此,我們提出了動態自洽性方法(ASC),它利用正負數據來訓練排序模型,可以自適應地重新配權候選推理鏈路。

2.3.1排序模型訓練

理想情況下,我們希望排序模型為得出正確答案的推理鏈路分配更高的權重,反之亦然。因此,我們用以下方式構造訓練樣本:

16ff3c32-b6a2-11ee-8b88-92fbcf53809c.png

并使用 MSE loss 去訓練排序模型:

170a0c52-b6a2-11ee-8b88-92fbcf53809c.png

2.3.2加權策略

我們將投票策略修改為以下公式,以實現自適應地重新加權候選推理鏈路的目標:

17313c5a-b6a2-11ee-8b88-92fbcf53809c.png

下圖展示了 ASC 策略的流程:

173845ea-b6a2-11ee-8b88-92fbcf53809c.png

從知識遷移的角度來看,ASC 實現了對來自 LLMs 的知識(正向和負向)的進一步利用,以幫助小模型獲得更好的性能。

本研究專注于具有挑戰性的數學推理數據集 MATH,該數據集共有 12500 個問題,涉及七個不同的科目。此外,我們還引入了以下四個數據集來評估所提出的框架對分布外(OOD)數據的泛化能力:GSM8K、ASDiv、MultiArith和SVAMP。

對于教師模型,我們使用 Open AI 的 gpt-3.5-turbo 和 gpt-4 API來生成推理鏈。對于學生模型,我們選擇 LLaMA-7b。

在我們的研究中有兩種主要類型的基線:一種為大語言模型(LLMs),另一種則基于 LLaMA-7b。對于 LLMs,我們將其與兩種流行的模型進行比較:GPT3 和 PaLM。對于 LLaMA-7b,我們首先提供我們的方法與三種設置進行比較:Few-shot、Fine-tune(在原始訓練樣本上)、CoT KD(思維鏈蒸餾)。在從負向角度學習方面,還將包括四種基線方法:MIX(直接用正向和負向數據的混合物訓練 LLaMA)、CL(對比學習)、NT(負訓練)和 UL(非似然損失)。

3.1 NAT 實驗結果

所有的方法都使用了貪婪搜索(即溫度 = 0),NAT 的實驗結果如圖所示,表明所提出的 NAT 方法在所有基線上都提高了任務準確性。

從 GPT3 和 PaLM 的低值可以看出,MATH 是一個非常困難的數學數據集,但 NAT 仍然能夠在參數極少的情況下表現突出。與在原始數據上進行微調相比,NAT 在兩種不同的 CoT 來源下實現了約 75.75% 的提升。與 CoT KD 在正樣本上的比較,NAT 也顯著提高了準確性,展示了負樣本的價值。

對于利用負向信息基線,MIX 的低性能表明直接訓練負樣本會使模型效果很差。其他方法也大多不如 NAT,這表明在復雜推理任務中僅在負方向上使用負樣本是不夠的。

1746311e-b6a2-11ee-8b88-92fbcf53809c.png

3.2 NCE 實驗結果

如圖所示,與知識蒸餾(KD)相比,NCE 實現了平均 10%(0.66) 的進步,這證明了利用負樣本提供的校準信息進行蒸餾的有效性。與 NAT 相比,盡管 NCE 減少了一些參數,但它依然有 6.5% 的進步,實現壓縮模型并提高性能的目的。

174a1784-b6a2-11ee-8b88-92fbcf53809c.png

3.3 ASC 實驗結果

為了評估 ASC,我們將其與基礎 SC 和 加權(WS)SC 進行比較,使用采樣溫度 T = 1 生成了 16 個樣本。如圖所示,結果表明,ASC 從不同樣本聚合答案,是一種更有前景的策略。

175627ea-b6a2-11ee-8b88-92fbcf53809c.png

3.4 泛化性實驗結果

除了 MATH 數據集,我們評估了框架在其他數學推理任務上的泛化能力,實驗結果如下。

176174ec-b6a2-11ee-8b88-92fbcf53809c.png

本項工作探討了利用負樣本從大語言模型中提煉復雜推理能力,遷移到專業化小模型的有效性。小紅書搜索算法團隊提出了一個全新的框架,由三個序列化步驟組成,并在模型專業化的整個過程中充分利用負向信息。負向協助訓練(NAT)可以從兩個角度提供更全面地利用負向信息的方法。負向校準增強(NCE)能夠校準自蒸餾過程,使其更有針對性地掌握關鍵知識。基于兩種觀點訓練的排序模型可以為答案聚合分配更適當的權重,以實現動態自洽性(ASC)。大量實驗表明,我們的框架可以通過生成的負樣本來提高提煉推理能力的有效性。

作者:

李易為:

現博士就讀于北京理工大學,小紅書社區搜索實習生,在 AAAI、ACL、EMNLP、NAACL、NeurIPS、KBS 等機器學習、自然語言處理領域頂級會議/期刊上發表數篇論文,主要研究方向為大語言模型蒸餾與推理、開放域對話生成等。

袁沛文:

現博士就讀于北京理工大學,小紅書社區搜索實習生,在 NeurIPS、AAAI 等發表多篇一作論文,曾獲 DSTC11 Track 4 第二名。主要研究方向為大語言模型推理與評測。

馮少雄:

負責小紅書社區搜索向量召回。在 AAAI、EMNLP、ACL、NAACL、KBS 等機器學習、自然語言處理領域頂級會議/期刊上發表數篇論文。

道玄(潘博遠):

小紅書交易搜索負責人。在NeurIPS、ICML、ACL 等機器學習和自然語言處理領域頂級會議上發表數篇一作論文,在斯坦福機器閱讀競賽 SQuAD 排行榜上獲得第二名,在斯坦福自然語言推理排行榜上獲得第一名。

曾書(曾書書):

小紅書社區搜索語義理解與召回方向負責人。碩士畢業于清華大學電子系,在互聯網領域先后從事自然語言處理、推薦、搜索等相關方向的算法工作。

審核編輯:黃飛

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4615

    瀏覽量

    92962
  • OpenAI
    +關注

    關注

    9

    文章

    1095

    瀏覽量

    6550
  • 大模型
    +關注

    關注

    2

    文章

    2474

    瀏覽量

    2775
  • LLM
    LLM
    +關注

    關注

    0

    文章

    289

    瀏覽量

    351

原文標題:小紅書搜索團隊提出全新框架:驗證負樣本對大模型蒸餾的價值

文章出處:【微信號:zenRRan,微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    傳感器EMC的重要性研究進展

      摘要:針對現代信息技術對傳感器穩定性、靈敏及精確度要求日益提高,以及日益復雜電磁環境下傳感器面臨的電磁兼容性問題,論述傳感器電磁兼容內涵及特點,指出目前開展傳感器電磁兼容研究
    發表于 11-05 15:51

    代碼規范的重要性是什么

    論代碼規范的重要性
    發表于 05-19 13:07

    傳感器波形分析汽車故障診斷重要性

    傳感器波形分析汽車故障診斷重要性
    發表于 05-12 06:27

    電機位置信號的重要性

    電機位置信號的重要性永磁同步電機FOC控制算法,需要用到一個非常重要的物理量是電機的位置信號。這個位置信號到底有多重要呢?還是用數據來說
    發表于 08-27 07:36

    論調節閥的重要性

    調節閥的重要性執行機構的選擇  論調節閥的重要性:  1.控制閥是一種節流裝置,屬于運動部件。與檢測元件、變送器和控制器相比,控制過程,控制閥需要不斷改變節流部分的過流面積,使控制
    發表于 09-15 07:25

    arm匯編的重要性是什么?

    arm匯編的重要性是什么?
    發表于 11-30 08:03

    討論紋理分析圖像分類重要性及其深度學習中使用紋理分析

    紋理就能被更準確地捕捉和分類。  基于紋理的分類任務重,紋理分析對于深度學習的重要性  由于紋理基于局部模式,而傳統的深度學習方法強調復雜的特征,對紋理分類沒有幫助,因此,傳統的CNN架構不能很好
    發表于 10-26 16:57

    電磁勢量子理論重要性

    電磁勢量子理論重要性:Significance of Electromagnetic Potentials in the Quantum Theory
    發表于 11-27 13:01 ?10次下載

    ESD標準汽車電子設計重要性

    這是有關于esd測試汽車電子產品安全可靠性能重要性體現。
    發表于 05-24 14:14 ?3次下載

    知乎搜索中文本相關和知識蒸餾的工作實踐

    方案 知乎搜索BERT蒸餾上的實踐 01 知乎搜索文本相關的演進 1. 文本相關的演進 我
    的頭像 發表于 01-18 17:20 ?2773次閱讀
    知乎<b class='flag-5'>搜索</b>中文本相關<b class='flag-5'>性</b>和知識<b class='flag-5'>蒸餾</b>的工作實踐

    壓敏電阻電源電路的應用及重要性綜述

    壓敏電阻電源電路的應用及重要性綜述
    發表于 05-25 11:33 ?13次下載

    基于變量依賴關系模型的變量重要性度量綜述

    基于變量依賴關系模型的變量重要性度量綜述
    發表于 07-02 14:44 ?0次下載

    雙塔模型擴量樣本的方法比較

    雙塔模型訓練時是對一個batch內樣本訓練。一個batch內每個樣本 (user和item對)為正樣本,該user與batch內其它ite
    的頭像 發表于 07-08 10:57 ?1187次閱讀

    關于快速知識蒸餾的視覺框架

    知識蒸餾框架包含了一個預訓練好的 teacher 模型蒸餾過程權重固定),和一個待學習的 student 模型, teacher 用來產生
    的頭像 發表于 08-31 10:13 ?908次閱讀

    ChatGPT:AI模型框架研究

      一、AI框架重要性日益突顯,框架技術發展進入繁榮期,國內AI框架技術加速發展:  1、AI框架作為銜接數據和
    發表于 03-29 17:06 ?9次下載
    主站蜘蛛池模板: bl 高h文| 人与牲动交xxxbbb| 岬奈奈美在线 国产一区| 亚洲欧洲一二三区| 在线免费一区| 日本免费在线一区| 国产叼嘿视频网站在线观看 | yy6080理aa级伦大片一级| 成 黄 色 激 情视频网站| 在线免费黄色网址| 手机看片日韩永久福利盒子| 久久精品国产乱子伦多人| 国产乱子伦| 8888奇米四色在线| 成人久久久精品乱码一区二区三区| 亚洲一级色| 色视频免费在线观看| 美女网站色黄| 丁香九月婷婷| 日本超黄视频| 完全免费在线视频| 日美一级毛片| 天天看片天天操| 女人精aaaa片一级毛片女女| 国产免费一区二区三区| 天天做天天爱夜夜爽女人爽宅| 九九久久九九久久| 亚洲最新| 天堂资源www天堂在线| 免费看黄的视频软件| 7777在线| 草馏社区| 999影院成 人在线影院| 日韩欧美一区二区三区不卡视频| 激情综合六月| 日本一本一道久久香蕉免费| 国产在线观看黄| 性天堂网| 国内精品视频| 久久天天躁狠狠躁夜夜躁综合| 在线观看亚洲一区二区|