在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用OpenVINO?在你的本地設(shè)備上離線運(yùn)行Llama3之快手指南

英特爾物聯(lián)網(wǎng) ? 來源:英特爾物聯(lián)網(wǎng) ? 2024-04-26 09:42 ? 次閱讀

人工智能領(lǐng)域,大型語言模型(LLMs)的發(fā)展速度令人震驚。2024年4月18日,Meta正式開源了LLama系列的新一代大模型Llama3,在這一領(lǐng)域中樹立了新的里程碑。Llama3不僅繼承了先前模型的強(qiáng)大能力,還通過技術(shù)革新,在多模態(tài)理解、長文本處理及語言生成等多個方面實(shí)現(xiàn)了質(zhì)的飛躍。Llama3的開放性和靈活性也為開發(fā)者提供了前所未有的便利。無論是進(jìn)行模型微調(diào),還是集成到現(xiàn)有的系統(tǒng)中,Llama3都展現(xiàn)了極高的適應(yīng)性和易用性。

除此之外,提到Llama3模型的部署,除了將其部署在云端之外,模型的本地化部署可以讓開發(fā)者能夠在不依賴云計算資源的情況下,實(shí)現(xiàn)數(shù)據(jù)處理和大模型運(yùn)算的高效率和高隱私性。利用OpenVINO部署Llama3到本地計算資源,例如AI PC,不僅意味著更快的響應(yīng)速度和更低的運(yùn)行成本,還能有效地保護(hù)數(shù)據(jù)安全,防止敏感信息外泄。這對于需要處理高度敏感數(shù)據(jù)的應(yīng)用場景尤其重要,如醫(yī)療、金融和個人助理等領(lǐng)域。

本文將在簡要介紹Llama3模型的基礎(chǔ)上,重點(diǎn)介紹如何使用 OpenVINO 對Llama3模型進(jìn)行優(yōu)化和推理加速,并將其部署在本地的設(shè)備上,進(jìn)行更快、更智能推理的 AI 推理。

Llama3模型簡介

Llama3提供了多種參數(shù)量級的模型,如8B和70B參數(shù)模型。其核心特點(diǎn)和優(yōu)勢可總結(jié)如下:

1

先進(jìn)的能力與強(qiáng)大的性能

Llama3模型提供了在推理、語言生成和代碼執(zhí)行等方面的SOTA性能,為大型語言模型(LLMs)設(shè)定了新的行業(yè)標(biāo)準(zhǔn)。

2

增強(qiáng)的效率

采用僅解碼器的Transformer架構(gòu)與群組查詢注意力(GQA),優(yōu)化了語言編碼效率和計算資源使用,適用于大規(guī)模AI任務(wù)。

3

全面的訓(xùn)練與調(diào)優(yōu)

在超過15萬億的tokens上進(jìn)行預(yù)訓(xùn)練,并通過SFT和PPO等創(chuàng)新的指令微調(diào)技術(shù),Llama3在處理復(fù)雜的多語言任務(wù)和多樣化的AI應(yīng)用中表現(xiàn)卓越。

4

開源社區(qū)焦點(diǎn)

作為Meta開源倡議的一部分發(fā)布,Llama3鼓勵社區(qū)參與和創(chuàng)新,開發(fā)者可以輕松訪問其生態(tài)系統(tǒng)并貢獻(xiàn)其發(fā)展。

利用 OpenVINO優(yōu)化和加速推理

如前所述,部署Llama3模型到本地設(shè)備上,不僅意味著更快的響應(yīng)速度和更低的運(yùn)行成本,還能有效地保護(hù)數(shù)據(jù)安全,防止敏感信息外泄。因此,本文將重點(diǎn)介紹如何利用OpenVINO將Llama3模型進(jìn)行優(yōu)化后部署到本地的設(shè)備上。這個過程包括以下具體步驟,使用的是我們常用的 OpenVINO Notebooks GitHub倉庫[1]中的llm-chatbot 代碼示例。詳細(xì)信息和完整的源代碼可以在這里[2]找到。

[1]OpenVINO Notebooks GitHub倉庫

https://github.com/openvinotoolkit/openvino_notebooks/tree/latest

[2] 詳細(xì)信息與完整源代碼

https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/llm-chatbot

1

由安裝必要的依賴包開始

運(yùn)行 OpenVINO Notebooks 倉庫的具體安裝指南[3]在這里。運(yùn)行這個llm-chatbot 的代碼示例,需要安裝以下必要的依賴包。

[3] 具體的安裝指南

https://github.com/openvinotoolkit/openvino_notebooks?tab=readme-ov-file#-installation-guide

efac6d06-030b-11ef-a297-92fbcf53809c.png

2

選擇推理的模型

由于我們在 Jupyter Notebook 演示中提供了一組由 OpenVINO 支持的 多語種的大預(yù)言模型,您可以從下拉框中首先選擇語言。針對Llama3,我們選擇英語。

efb36a34-030b-11ef-a297-92fbcf53809c.png

接下來選擇 “l(fā)lama-3-8b-instruct” 來運(yùn)行該模型的其余優(yōu)化和推理加速步驟。當(dāng)然,很容易切換到其他列出的任意模型。

efd1bd04-030b-11ef-a297-92fbcf53809c.png

3

使用 Optimum-CLI進(jìn)行模型轉(zhuǎn)換

Optimum Intel 是 Hugging Face Transformers 和 Diffuser 庫與 OpenVINO 之間的接口,用于加速 Intel 體系結(jié)構(gòu)上的端到端流水線。它提供了易于使用的cli接口,即命令行接口,用于將模型導(dǎo)出為OpenVINO中間表示(IR)格式。使用下面的一行命令,就可以完成模型的導(dǎo)出。

optimum-cli export openvino --model  --task  

其中,--model參數(shù)是來自HuggingFace Hub的模型ID或帶有模型ID的已經(jīng)將模型下載到本地目錄的路徑地址(使用.save_pretrained方法保存),--task是導(dǎo)出模型應(yīng)解決的支持任務(wù)之一。對于LLM,它將是text-generation-with-past。如果模型初始化需要使用遠(yuǎn)程代碼,則應(yīng)額外傳遞--trust-remote-code遠(yuǎn)程代碼標(biāo)志。

4

模型權(quán)重壓縮

盡管像 Llama-3-8B-Instruct 這樣的 LLM 在理解和生成類人文本方面變得越來越強(qiáng)大和復(fù)雜,但管理和部署這些模型在計算資源、內(nèi)存占用、推理速度等方面帶來了關(guān)鍵挑戰(zhàn),尤其是對于AI PC這種客戶端設(shè)備。權(quán)重壓縮算法旨在壓縮模型的權(quán)重,并可用于優(yōu)化大型模型的模型占用空間和性能,其中權(quán)重的大小相對大于激活的大小,例如大型語言模型(LLM)。與INT8壓縮相比,INT4壓縮可以進(jìn)一步壓縮模型大小,并提升文本生成性能,但預(yù)測質(zhì)量略有下降。因此,在這里我們選擇模型權(quán)重壓縮為INT4精度。

efeb2b86-030b-11ef-a297-92fbcf53809c.png

5

使用 Optimum-CLI進(jìn)行權(quán)重壓縮

當(dāng)使用Optimum-CLI導(dǎo)出模型時,您還可以選擇在線性、卷積和嵌入層上應(yīng)用FP16、INT8位或INT4位權(quán)重壓縮。使用方法非常的簡便,就是將--weight格式分別設(shè)置為fp16、int8或int4。這種類型的優(yōu)化允許減少內(nèi)存占用和推理延遲。默認(rèn)情況下,int8/int4的量化方案將是不對稱的量化壓縮。如果您需要使用對稱壓縮,可以添加--sym。

對Llama-3-8B-Instruct模型進(jìn)行INT4量化,我們指定以下參數(shù):

compression_configs = {
    "llama-3-8b-instruct": {
      "sym": True,
      "group_size": 128,
      "ratio": 0.8,
    },
}

--group size參數(shù)將定義用于量化的組大小,為128。

--ratio參數(shù)控制4位和8位量化之間的比率。這意味著80%的層將被量化為int4,而20%的層將量化為int8。

運(yùn)行Optimum-CLI進(jìn)行模型的下載及權(quán)重壓縮的命令如下:

optimum-cli export openvino --model "llama-3-8b-instruct" --task text-generation-with-past --weight-format int4 --group-size 128 --ratio 0.8 –sym

運(yùn)行上述命令后,模型將從Hugging Face Hub自動下載Llama-3-8B-Instruct模型,并進(jìn)行相應(yīng)的模型壓縮操作。

對于模型下載有困難的開發(fā)者,也可以從ModelScope開源社區(qū)的以下鏈接:

Meta-Llama-3-8B-Instruct:

https://modelscope.cn/models/LLM-Research/Meta-Llama-3-8B-Instruct

Meta-Llama-3-70B-Instruct:

https://modelscope.cn/models/LLM-Research/Meta-Llama-3-70B-Instruct

通過Git的方式進(jìn)行下載:

git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B-Instruct.git

經(jīng)過權(quán)重壓縮后,我們可以看到,8B模型的體積大小已經(jīng)被壓縮為僅有5GB左右。

eff91020-030b-11ef-a297-92fbcf53809c.png

6

選擇推理設(shè)備和模型變體

由于 OpenVINO 能夠在一系列硬件設(shè)備上輕松部署,因此還提供了一個下拉框供您選擇將在其上運(yùn)行推理的設(shè)備。考慮到要對模型尺寸和性能需求,在這里我們選擇搭載了英特爾酷睿 Ultra7 155H處理器的 AI PC上的GPU 作為推理設(shè)備。

f007a130-030b-11ef-a297-92fbcf53809c.png

7

使用 Optimum Intel 實(shí)例化模型

Optimum Intel可用于從將下載到本地并完成了權(quán)重壓縮后的模型進(jìn)行加載,并創(chuàng)建推理流水線,通過Hugging FaceAPI使用OpenVINO Runtime運(yùn)行推理。在這種情況下,這意味著我們只需要將 AutoModelForXxx 類替換為相應(yīng)的 OVModelForXxx 類。

f01a109a-030b-11ef-a297-92fbcf53809c.png

8

運(yùn)行聊天機(jī)器人

現(xiàn)在萬事具備,在這個 Notebook 代碼示例中我們還提供了一個基于 Gradio 的用戶友好的界面。現(xiàn)在就讓我們把聊天機(jī)器人運(yùn)行起來吧。

f02fb4b8-030b-11ef-a297-92fbcf53809c.gif

小結(jié)

整個的步驟就是這樣!現(xiàn)在就開始跟著我們提供的代碼和步驟,動手試試用 OpenVINO 在本地設(shè)備上運(yùn)行基于Llama3大語言模型的聊天機(jī)器人吧。



審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1791

    文章

    47274

    瀏覽量

    238468
  • 聊天機(jī)器人
    +關(guān)注

    關(guān)注

    0

    文章

    339

    瀏覽量

    12312
  • 大模型
    +關(guān)注

    關(guān)注

    2

    文章

    2448

    瀏覽量

    2702
  • OpenVINO
    +關(guān)注

    關(guān)注

    0

    文章

    93

    瀏覽量

    201

原文標(biāo)題:使用OpenVINO?在你的本地設(shè)備上離線運(yùn)行Llama3之快手指南 | 開發(fā)者實(shí)戰(zhàn)

文章出處:【微信號:英特爾物聯(lián)網(wǎng),微信公眾號:英特爾物聯(lián)網(wǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    【飛騰派4G版免費(fèi)試用】仙女姐姐的嵌入式實(shí)驗(yàn)室五~LLaMA.cpp及3B“小模型”O(jiān)penBuddy-StableLM-3B

    目使用了C++重寫了LLaMA模型,使其能夠在硬件較弱的設(shè)備使用CPU運(yùn)行LLaMA模型,不需要較高的顯卡性能 獲取
    發(fā)表于 12-22 10:18

    無法在AMD Ryzen CPU運(yùn)行OpenVINO trade怎么解決?

    在 AMD Ryzen CPU 運(yùn)行OpenVINO?推理。 收到錯誤消息: libva error: vaGetDriverNameByIndex() failed with unknown libva error, dr
    發(fā)表于 08-15 06:46

    在Raspberry Pi從源代碼構(gòu)建OpenVINO 2021.3收到錯誤怎么解決?

    在 Raspberry Pi 從源代碼構(gòu)建 OpenVINO?2021.3。 運(yùn)行OpenVINO?推理,并收到錯誤消息: ModuleNotFoundError:沒有
    發(fā)表于 08-15 08:24

    無法在OpenVINO trade Docker中運(yùn)行OpenCV怎么解決?

    運(yùn)行命令:docker run -ditu root:root --name=openvino -h \"openvino\" --privileged \\ --device
    發(fā)表于 08-15 08:29

    了解快手作品是否熱門的3種方法

    ? ? ? ?很多小伙伴發(fā)布作品之后,就一心撲在快手作品,看自己的快手評論、快手點(diǎn)贊、快手播放的數(shù)量情況如何,那么我們怎么知道自己的
    發(fā)表于 03-27 11:30 ?3928次閱讀

    快手指優(yōu)先開源硬件設(shè)計

    電子發(fā)燒友網(wǎng)站提供《最快手指優(yōu)先開源硬件設(shè)計.zip》資料免費(fèi)下載
    發(fā)表于 06-09 10:36 ?0次下載
    最<b class='flag-5'>快手指</b>優(yōu)先開源硬件設(shè)計

    百度智能云國內(nèi)首家支持Llama3全系列訓(xùn)練推理!

    4月18日,Meta 正式發(fā)布 Llama 3,包括8B 和 70B 參數(shù)的大模型,官方號稱有史以來最強(qiáng)大的開源大模型。
    的頭像 發(fā)表于 04-20 09:20 ?405次閱讀
    百度智能云國內(nèi)首家支持<b class='flag-5'>Llama3</b>全系列訓(xùn)練推理!

    Llama 3 王者歸來,Airbox 率先支持部署

    前天,智算領(lǐng)域迎來一則令人振奮的消息:Meta正式發(fā)布了備受期待的開源大模型——Llama3Llama3的卓越性能Meta表示,Llama3在多個關(guān)鍵基準(zhǔn)測試中展現(xiàn)出卓越性能,超越了業(yè)內(nèi)先進(jìn)的同類
    的頭像 發(fā)表于 04-22 08:33 ?647次閱讀
    <b class='flag-5'>Llama</b> <b class='flag-5'>3</b> 王者歸來,Airbox 率先支持部署

    高通支持Meta Llama 3在驍龍終端上運(yùn)行

    高通與Meta攜手合作,共同推動Meta的Llama 3大語言模型(LLM)在驍龍驅(qū)動的各類終端設(shè)備實(shí)現(xiàn)高效運(yùn)行。此次合作致力于優(yōu)化
    的頭像 發(fā)表于 05-09 10:37 ?434次閱讀

    Optimum Intel三步完成Llama3在算力魔方的本地量化和部署

    Llama3 是Meta最新發(fā)布的開源大語言模型(LLM), 當(dāng)前已開源8B和70B參數(shù)量的預(yù)訓(xùn)練模型權(quán)重,并支持指令微調(diào)。
    的頭像 發(fā)表于 05-10 10:34 ?1056次閱讀
    Optimum Intel三步完成<b class='flag-5'>Llama3</b>在算力魔方的<b class='flag-5'>本地</b>量化和部署

    【AIBOX上手指南】快速部署Llama3

    Firefly開源團(tuán)隊(duì)推出了Llama3部署包,提供簡易且完善的部署教程,過程無需聯(lián)網(wǎng),簡單快捷完成本地化部署。點(diǎn)擊觀看Llama3快速部署教程:Step.1準(zhǔn)備部署包進(jìn)入Firefly下載中心
    的頭像 發(fā)表于 06-06 08:02 ?666次閱讀
    【AIBOX上<b class='flag-5'>手指南</b>】快速部署<b class='flag-5'>Llama3</b>

    源2.0-M32大模型發(fā)布量化版 運(yùn)行顯存僅需23GB 性能可媲美LLaMA3

    北京2024年8月23日?/美通社/ -- 近日,浪潮信息發(fā)布源2.0-M32大模型4bit和8bit量化版,性能比肩700億參數(shù)的LLaMA3開源大模型。4bit量化版推理運(yùn)行顯存僅需
    的頭像 發(fā)表于 08-25 22:06 ?313次閱讀
    源2.0-M32大模型發(fā)布量化版 <b class='flag-5'>運(yùn)行</b>顯存僅需23GB 性能可媲美<b class='flag-5'>LLaMA3</b>

    使用OpenVINO 2024.4在算力魔方上部署Llama-3.2-1B-Instruct模型

    前面我們分享了《三步完成Llama3在算力魔方的本地量化和部署》。2024年9月25日,Meta又發(fā)布了Llama3.2:一個多語言大型語言模型(LLMs)的集合。
    的頭像 發(fā)表于 10-12 09:39 ?588次閱讀
    使用<b class='flag-5'>OpenVINO</b> 2024.4在算力魔方上部署<b class='flag-5'>Llama</b>-3.2-1B-Instruct模型

    如何使用 Llama 3 進(jìn)行文本生成

    使用LLaMA 3(Large Language Model Family of AI Alignment)進(jìn)行文本生成,可以通過以下幾種方式實(shí)現(xiàn),取決于你是否愿意在本地運(yùn)行模型或者使
    的頭像 發(fā)表于 10-27 14:21 ?389次閱讀

    用Ollama輕松搞定Llama 3.2 Vision模型本地部署

    Ollama 是一個開源的大語言模型服務(wù)工具,它的核心目的是簡化大語言模型(LLMs)的本地部署和運(yùn)行過程,請參考《Gemma 2+Ollama在算力魔方幫你在LeetCode解題》,一條命令完成
    的頭像 發(fā)表于 11-23 17:22 ?1045次閱讀
    用Ollama輕松搞定<b class='flag-5'>Llama</b> 3.2 Vision模型<b class='flag-5'>本地</b>部署
    主站蜘蛛池模板: 午夜视频在线观看www中文| 欧美簧片| 窝窝午夜在线观看免费观看 | 天堂免费在线视频| 好男人社区www的视频免费| 欧美三级色图| 最近2018年中文字幕大全一| 欧美大片xxxxbbbb| 天天操免费视频| 免费一区二区视频| 麦克斯奥特曼在线观看| 四虎在线观看免费永久| 色婷婷精品视频| 91久久夜色精品国产网站| 视频在线观看网站免费| 日本不卡在线一区二区三区视频| 亚洲精品久久久久久婷婷| 国产网红主播chinese| 天天色天天操综合网| 亚洲男人天堂岛| 四虎永久在线日韩精品观看| www.色偷偷| 草草影院私人免费入口| 五月综合激情视频在线观看| 成年女人毛片免费视频| semimi亚洲综合在线观看| 拍拍拍成人免费高清视频| 手机看片免费永久在线观看| 在线观看视频你懂得| 成人在线网| 成熟女性毛茸茸xx免费视频| 校园 春色 欧美 另类 小说| 8000av在线| 美女写真mm爽爽爽| 韩国三级观影久久| 人人精品| 五月婷婷七月丁香| 五月天丁香婷婷综合| 永久免费mv网站入口| 久久综合欧美成人| 4444狠狠|