在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工神經(jīng)網(wǎng)絡(luò)的工作原理是什么

科技綠洲 ? 來源:網(wǎng)絡(luò)整理 ? 作者:網(wǎng)絡(luò)整理 ? 2024-07-02 10:06 ? 次閱讀

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)的計算模型,它通過大量的簡單計算單元(神經(jīng)元)和它們之間的連接(突觸)來實現(xiàn)對復(fù)雜數(shù)據(jù)的處理和學習。本文將詳細介紹人工神經(jīng)網(wǎng)絡(luò)的工作原理,包括其基本概念、結(jié)構(gòu)、學習算法和應(yīng)用領(lǐng)域。

  1. 基本概念

1.1 神經(jīng)元

神經(jīng)元是人工神經(jīng)網(wǎng)絡(luò)的基本計算單元,它接收輸入信號,進行加權(quán)求和,然后通過激活函數(shù)進行非線性變換,生成輸出信號。神經(jīng)元的結(jié)構(gòu)如圖1所示。

圖1 神經(jīng)元結(jié)構(gòu)示意圖

1.2 突觸

突觸是神經(jīng)元之間的連接,它負責傳遞信號。每個突觸都有一個權(quán)重,用于調(diào)整信號的強度。權(quán)重的大小決定了突觸對信號的貢獻程度。

1.3 激活函數(shù)

激活函數(shù)是一種非線性函數(shù),用于將神經(jīng)元的輸入信號轉(zhuǎn)換為輸出信號。常見的激活函數(shù)有Sigmoid函數(shù)、Tanh函數(shù)、ReLU函數(shù)等。

1.4 損失函數(shù)

損失函數(shù)用于衡量神經(jīng)網(wǎng)絡(luò)的預(yù)測結(jié)果與真實結(jié)果之間的差異。常見的損失函數(shù)有均方誤差(MSE)、交叉熵(Cross-Entropy)等。

1.5 優(yōu)化算法

優(yōu)化算法用于調(diào)整神經(jīng)網(wǎng)絡(luò)的參數(shù),以最小化損失函數(shù)。常見的優(yōu)化算法有梯度下降(Gradient Descent)、隨機梯度下降(Stochastic Gradient Descent,SGD)、Adam等。

  1. 網(wǎng)絡(luò)結(jié)構(gòu)

2.1 感知機

感知機是一種最簡單的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),由輸入層、輸出層和權(quán)重組成。感知機可以解決線性可分問題,如圖2所示。

圖2 感知機結(jié)構(gòu)示意圖

2.2 多層感知機(MLP)

多層感知機是一種包含多個隱藏層的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它可以解決非線性問題。MLP的結(jié)構(gòu)如圖3所示。

圖3 多層感知機結(jié)構(gòu)示意圖

2.3 卷積神經(jīng)網(wǎng)絡(luò)(CNN)

卷積神經(jīng)網(wǎng)絡(luò)是一種適用于圖像處理的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它通過卷積層、池化層和全連接層來提取圖像特征。CNN的結(jié)構(gòu)如圖4所示。

圖4 卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)示意圖

2.4 循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)

循環(huán)神經(jīng)網(wǎng)絡(luò)是一種適用于序列數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它通過循環(huán)連接來處理時間序列數(shù)據(jù)。RNN的結(jié)構(gòu)如圖5所示。

圖5 循環(huán)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)示意圖

2.5 生成對抗網(wǎng)絡(luò)(GAN)

生成對抗網(wǎng)絡(luò)是一種由生成器和判別器組成的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),用于生成新的數(shù)據(jù)樣本。GAN的結(jié)構(gòu)如圖6所示。

圖6 生成對抗網(wǎng)絡(luò)結(jié)構(gòu)示意圖

  1. 學習算法

3.1 前向傳播

前向傳播是神經(jīng)網(wǎng)絡(luò)從輸入層到輸出層的信號傳遞過程。在前向傳播過程中,每個神經(jīng)元接收輸入信號,通過加權(quán)求和和激活函數(shù)生成輸出信號。

3.2 反向傳播

反向傳播是神經(jīng)網(wǎng)絡(luò)從輸出層到輸入層的誤差傳遞過程。在反向傳播過程中,通過計算損失函數(shù)的梯度,更新網(wǎng)絡(luò)的權(quán)重。

3.3 梯度下降

梯度下降是一種優(yōu)化算法,用于最小化損失函數(shù)。在梯度下降過程中,通過不斷更新權(quán)重,使損失函數(shù)的值逐漸減小。

3.4 隨機梯度下降

隨機梯度下降是一種梯度下降的變體,它在每次迭代中只使用一個樣本來更新權(quán)重,從而加快學習速度。

3.5 Adam優(yōu)化算法

Adam是一種自適應(yīng)學習率的優(yōu)化算法,它結(jié)合了動量(Momentum)和RMSProp的優(yōu)點,能夠在不同的參數(shù)上使用不同的學習率。

  1. 應(yīng)用領(lǐng)域

4.1 圖像識別

人工神經(jīng)網(wǎng)絡(luò)在圖像識別領(lǐng)域取得了顯著的成果,如卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類、目標檢測和圖像分割等任務(wù)上表現(xiàn)出色。

4.2 語音識別

人工神經(jīng)網(wǎng)絡(luò)在語音識別領(lǐng)域也取得了很好的效果,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長短時記憶網(wǎng)絡(luò)(LSTM)在語音識別和語音合成等任務(wù)上具有優(yōu)勢。

4.3 自然語言處理

人工神經(jīng)網(wǎng)絡(luò)在自然語言處理領(lǐng)域有著廣泛的應(yīng)用,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長短時記憶網(wǎng)絡(luò)(LSTM)在文本分類、情感分析和機器翻譯等任務(wù)上取得了顯著的成果。

4.4 推薦系統(tǒng)

人工神經(jīng)網(wǎng)絡(luò)在推薦系統(tǒng)領(lǐng)域也取得了很好的效果,如矩陣分解和深度學習推薦模型在個性化推薦和廣告投放等任務(wù)上具有優(yōu)勢。

4.5 游戲AI

人工神經(jīng)網(wǎng)絡(luò)在游戲AI領(lǐng)域也取得了突破性進展,如AlphaGo和AlphaZero等基于深度學習的AI在圍棋、國際象棋等游戲中戰(zhàn)勝了人類頂級選手。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    1

    文章

    120

    瀏覽量

    14828
  • 神經(jīng)元
    +關(guān)注

    關(guān)注

    1

    文章

    368

    瀏覽量

    18696
  • 計算模型
    +關(guān)注

    關(guān)注

    0

    文章

    29

    瀏覽量

    9924
  • 輸入信號
    +關(guān)注

    關(guān)注

    0

    文章

    471

    瀏覽量

    12797
收藏 0人收藏

    評論

    相關(guān)推薦

    基于Python 的人工神經(jīng)網(wǎng)絡(luò)工作原理

    摘要: 深度學習背后的主要原因是人工智能應(yīng)該從人腦中汲取靈感。本文就用一個小例子無死角的介紹一下深度學習! 人腦模擬 深度學習背后的主要原因是人工智能應(yīng)該從人腦中汲取靈感。此觀點引出了“神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 12-31 17:07 ?3304次閱讀
    基于Python 的<b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的<b class='flag-5'>工作原理</b>

    人工神經(jīng)網(wǎng)絡(luò)原理及下載

    人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認識過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個“網(wǎng)絡(luò)”,通過不斷地給
    發(fā)表于 06-19 14:40

    人工神經(jīng)網(wǎng)絡(luò)課件

    人工神經(jīng)網(wǎng)絡(luò)課件
    發(fā)表于 06-19 10:15

    【PYNQ-Z2試用體驗】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識

    前言前面我們通過notebook,完成了在PYNQ-Z2開發(fā)板上編寫并運行python程序。我們的最終目的是基于神經(jīng)網(wǎng)絡(luò),完成手寫的數(shù)字識別。在這之前,有必要講一下神經(jīng)網(wǎng)絡(luò)的基本概念和工作原理。何為
    發(fā)表于 03-03 22:10

    人工神經(jīng)網(wǎng)絡(luò)實現(xiàn)方法有哪些?

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實際問題。那有哪些辦法能實現(xiàn)人工
    發(fā)表于 08-01 08:06

    【AI學習】第3篇--人工神經(jīng)網(wǎng)絡(luò)

    `本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機器學習的步驟:訓練與預(yù)測、訓練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達訓練流程
    發(fā)表于 11-05 17:48

    怎么解決人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題

    本文提出了一個基于FPGA 的信息處理的實例:一個簡單的人工神經(jīng)網(wǎng)絡(luò)應(yīng)用Verilog 語言描述,該數(shù)據(jù)流采用模塊化的程序設(shè)計,并考慮了模塊間數(shù)據(jù)傳輸信號同 步的問題,有效地解決了人工神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 05-06 07:22

    人工神經(jīng)網(wǎng)絡(luò),人工神經(jīng)網(wǎng)絡(luò)是什么意思

    人工神經(jīng)網(wǎng)絡(luò),人工神經(jīng)網(wǎng)絡(luò)是什么意思 神經(jīng)網(wǎng)絡(luò)是一門活躍的邊緣性交叉學科.研究它的發(fā)展過程和前沿問題,具有重要的理論意義
    發(fā)表于 03-06 13:39 ?3474次閱讀

    BP神經(jīng)網(wǎng)絡(luò)編碼樣例及工作原理

    網(wǎng)絡(luò)的訓練過程即為調(diào)節(jié)該函數(shù)參數(shù)提高預(yù)測精度的過程.神經(jīng)網(wǎng)絡(luò)要解決的問題與最小二乘法回歸解決的問題并無根本性區(qū)別。 回歸和分類是常用神經(jīng)網(wǎng)絡(luò)處理的兩類問題, 如果你已經(jīng)了解了神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 11-16 12:26 ?7417次閱讀
    BP<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>編碼樣例及<b class='flag-5'>工作原理</b>

    人工神經(jīng)網(wǎng)絡(luò)工作原理解析

    如果認知系統(tǒng)基于模型,那么您需要首先了解機器學習模型是什么。與通過數(shù)據(jù)訓練來學習隱藏模式的物理模型(白盒)相反,機器學習模型是一種統(tǒng)計模型(黑盒)。
    的頭像 發(fā)表于 05-28 16:39 ?2w次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋

    卷積神經(jīng)網(wǎng)絡(luò)工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種眾所周知的深度學習算法,是
    的頭像 發(fā)表于 08-21 16:49 ?4257次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)工作原理是什么

    人工智能神經(jīng)網(wǎng)絡(luò)工作原理是一個復(fù)雜且深入的話題,涉及到多個領(lǐng)域的知識,包括數(shù)學、計算機科學、生物學等。 神經(jīng)網(wǎng)絡(luò)的基本概念 神經(jīng)網(wǎng)絡(luò)是一種
    的頭像 發(fā)表于 07-04 09:35 ?1228次閱讀

    人工神經(jīng)網(wǎng)絡(luò)工作原理和基本特征

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs或NNs),也常被稱為神經(jīng)網(wǎng)絡(luò)或連接模型,是一種模仿動物神經(jīng)網(wǎng)絡(luò)行為特征,進行分布式并行信息處理的算法數(shù)
    的頭像 發(fā)表于 07-04 13:08 ?2537次閱讀

    人工神經(jīng)網(wǎng)絡(luò)工作原理及應(yīng)用

    、自然語言處理等。 神經(jīng)網(wǎng)絡(luò)的基本概念 神經(jīng)網(wǎng)絡(luò)是由大量的節(jié)點(或稱為神經(jīng)元)組成的網(wǎng)絡(luò)結(jié)構(gòu)。每個節(jié)點都與其他節(jié)點相連,形成一個復(fù)雜的網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-05 09:25 ?1110次閱讀

    前饋神經(jīng)網(wǎng)絡(luò)工作原理和應(yīng)用

    前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Network, FNN),作為最基本且應(yīng)用廣泛的一種人工神經(jīng)網(wǎng)絡(luò)模型,其工作原理和結(jié)構(gòu)對于理解深度學習及
    的頭像 發(fā)表于 07-08 11:28 ?2533次閱讀
    主站蜘蛛池模板: 久久这里只有精品免费视频 | 日本aaaa级片| 天天操天天干天天射 | 欧美另类图片亚洲偷 | 国产精品李雅在线观看 | 人人舔| 色妞女女女女女bbbb | 91久久夜色精品国产网站 | 四虎国产精品高清在线观看 | 天天干天天天天 | 国产做a爰片久久毛片 | 一级视频在线 | 久操成人| 亚洲九色 | 五月激情丁香 | 色婷婷亚洲精品综合影院 | 手机看片欧美日韩 | 狠狠色噜噜狠狠狠狠 | 性欧美暴力猛交69hd | 高清精品女厕在线观看 | 欧美一区二区视频在线观看 | 国产精品一区二区三区四区五区 | 日本一区免费在线观看 | 2017天天干| 三级网站视频 | 天天天天做夜夜夜夜 | 一级特黄色片 | 久久精品国产精品亚洲婷婷 | 91福利专区 | 狠狠狠色丁香婷婷综合激情 | 人人人人干 | 久久综合社区 | 成人精品一级毛片 | 亚洲成人99 | 欧美大片国产在线永久播放 | 天天做天天爱天天大综合 | 亚洲国产第一区二区香蕉 | 大桥未久加勒比女热大陆在线 | 国产精品你懂得 | 双性人皇上被c到哭 | 国产一区二区在线视频播放 |

    電子發(fā)燒友

    中國電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會員交流學習
    • 獲取您個性化的科技前沿技術(shù)信息
    • 參加活動獲取豐厚的禮品