在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于DPU的云原生計算資源共池管理解決方案

DPU高性能云異構(gòu)算力解決方案 ? 來源:DPU高性能云異構(gòu)算力解決 ? 作者:DPU高性能云異構(gòu)算 ? 2024-07-09 11:52 ? 次閱讀

1. 方案背景和挑戰(zhàn)

在傳統(tǒng)的云環(huán)境中,通常存在著不同的技術(shù)棧,支撐多樣化的計算服務(wù),具體如下:

① OpenStack環(huán)境與虛擬化云主機及裸金屬服務(wù)

OpenStack是一個開源的云計算管理平臺項目,它提供了部署和管理大規(guī)模計算、存儲、網(wǎng)絡(luò)等基礎(chǔ)設(shè)施的一整套軟件堆棧。在OpenStack技術(shù)棧中,Nova服務(wù)主要負(fù)責(zé)管理虛擬化云主機,而Ironic服務(wù)則專注于裸金屬資源的管理。

② Kubernetes環(huán)境與容器服務(wù)

Kubernetes(簡稱K8s)是廣受歡迎的容器管理平臺,是行業(yè)內(nèi)的事實標(biāo)準(zhǔn),主要用于自動化容器應(yīng)用的部署、擴展和管理。Kubernetes技術(shù)棧圍繞容器化應(yīng)用構(gòu)建,通過其核心組件如kubelet、kube-apiserver、scheduler等,實現(xiàn)了容器資源的高效調(diào)度與管理。

虛擬化云主機、裸金屬、容器這三種計算服務(wù)及其對應(yīng)的資源池通常獨立運行和管理,各自遵循不同的管理和調(diào)度規(guī)則。

這種分池管理的方式雖然在一定程度上保證了資源的專屬性和安全性,但也構(gòu)成了一個明顯的瓶頸,嚴(yán)重制約了資源的靈活性、擴展性和整體利用率,對運營效率和成本控制帶來了多重挑戰(zhàn)。以下是對這一問題的深入剖析:

1.1. 擴展性受限

在分池管理的框架下,業(yè)務(wù)的可擴展性受到了嚴(yán)重制約。首先,由于資源池的容量是固定的,當(dāng)某一資源池的資源即將耗盡時,即便其他類型的資源池中尚有大量閑置資源,也無法實現(xiàn)快速調(diào)配。其次,資源池的擴容往往需要人工介入,包括資源的重新規(guī)劃、配置、測試等一系列繁瑣流程,不僅耗時費力,還可能因為預(yù)判失誤導(dǎo)致資源閑置或供給不足,從而影響業(yè)務(wù)的連續(xù)性和服務(wù)質(zhì)量。這種擴展性差的問題,使得企業(yè)在面對市場變化和業(yè)務(wù)增長時,難以做到敏捷響應(yīng)和快速擴張,進(jìn)而錯失商機。

1.2. 資源分配僵化與切換困難

資源池之間的獨立管理進(jìn)一步加劇了資源分配的僵化,使得在不同資源池之間進(jìn)行資源切換或重新分配變得異常困難。例如,在虛擬機資源池接近滿負(fù)荷運行的同時,裸金屬資源池可能仍存在大量未充分利用的節(jié)點,但由于缺乏有效的資源池間通信和資源共享機制,這些裸金屬節(jié)點無法被快速轉(zhuǎn)換為虛擬機資源,以緩解虛擬機資源池的壓力。這種資源分配的不靈活性不僅限制了系統(tǒng)的彈性伸縮能力,還導(dǎo)致了資源的冗余和浪費。

1.3. 整體資源利用率低下

資源池的獨立管理導(dǎo)致了資源利用率的顯著下降。由于各資源池之間的資源無法實現(xiàn)共享,即便某些資源池存在資源過剩的情況,也無法有效支援資源緊張的池子,從而造成了資源分配的不平衡。例如,容器資源池中創(chuàng)建的節(jié)點可能只承載了少量的容器應(yīng)用,而與此同時,虛擬機資源池卻可能面臨嚴(yán)重的資源擠兌現(xiàn)象,導(dǎo)致新虛擬機的創(chuàng)建受阻。這種資源孤島現(xiàn)象不僅降低了整體資源的使用效率,還可能引發(fā)一系列連鎖反應(yīng),如服務(wù)延遲、性能下降和客戶滿意度降低等問題。

綜上所述,傳統(tǒng)云環(huán)境中資源池的獨立管理方式暴露出了一系列問題,包括擴展性差、資源分配不靈活和資源利用率低等,這些問題共同構(gòu)成了云計算資源管理的一大難題。為了解決這一挑戰(zhàn),業(yè)界正在積極探索和實踐資源池融合、自動化資源調(diào)度和智能資源配置等創(chuàng)新技術(shù),以期實現(xiàn)資源的高效利用和靈活調(diào)度,推動云計算基礎(chǔ)設(shè)施向著更加智能、彈性和經(jīng)濟的方向發(fā)展。

2. 方案介紹

2.1. 整體方案架構(gòu)

為了解決上述問題,我們提出了基于DPU的云原生計算資源共池管理解決方案,結(jié)合了DPU的硬件優(yōu)勢與Kubernetes的能力和插件生態(tài),在Kubernetes架構(gòu)下實現(xiàn)了虛擬機、裸金屬和容器資源的無縫整合與統(tǒng)一管理,可以實現(xiàn)當(dāng)某一類資源池(如虛擬機資源池)面臨資源緊張時,系統(tǒng)能夠自動從共享資源池中調(diào)用資源,實現(xiàn)Worker節(jié)點的快速擴容,而當(dāng)資源需求下降時,又能夠智能縮容,將多余Worker節(jié)點回收至共享池中,確保資源的按需分配與適時釋放。

本方案中包括了BareMetalManager,這是基于DPU的裸金屬管理軟件包,由bm-controller、bm-api、bm-handler三個組件組成。它負(fù)責(zé)管理裸金屬機器的生命周期,實現(xiàn)裸金屬服務(wù)器的無盤啟動、云盤的動態(tài)熱插拔以及網(wǎng)卡動態(tài)熱插拔。BareMetalManager將裸金屬服務(wù)器作為 k8s資源進(jìn)行統(tǒng)一管理,從而提升裸金屬服務(wù)器的管理效率,并為虛擬機、容器資源池Worker節(jié)點的快速部署提供基礎(chǔ)保障。

本方案的核心部分包括資源池狀態(tài)感知、評估和調(diào)度,基于Kubernetes Cluster AutoScaler進(jìn)行設(shè)計,其整體架構(gòu)如下:

wKgaomaLwmaAXB7XAAFLTaaLQPY500.png

該架構(gòu)主要是由以下幾個核心組件完成:

AutoScaler:核心模塊,負(fù)責(zé)集群節(jié)點及Pod信息檢查,調(diào)用擴縮容功能。

Estimator:負(fù)責(zé)評估worker節(jié)點擴容需求,進(jìn)行Pod預(yù)調(diào)度。

Simulator:負(fù)責(zé)評估worker節(jié)點縮容需求,模擬節(jié)點縮容。

Yusur Cloud Provider:負(fù)責(zé)將裸金屬資源注冊到為供Cluster AutoScaler擴縮容使用的NodeGroup。管理裸金屬實例的創(chuàng)建和刪除,并將裸金屬實例加入或移出 Kubernetes集群。

2.2. 方案詳細(xì)描述

本節(jié)主要對云原生計算資源共池管理方案的核心部分,即Cluster AutoScaler模塊、擴縮容邏輯以及cloud provider進(jìn)行介紹。

2.2.1. AutoScaler

AutoScaler啟動后觸發(fā)循環(huán)控制邏輯。每10s執(zhí)行一次,檢測集群狀態(tài),決定是否執(zhí)行擴容或縮容操作。整體流程圖如下:

wKgZomaLwrWAXPHyAAJtbwyi5dY713.png

從流程圖中可以看到,AutoScaler關(guān)鍵邏輯為發(fā)現(xiàn)node,pod以及cloud provider信息。經(jīng)過幾個模塊處理,將因資源不足導(dǎo)致未調(diào)度的pod緩存起來。然后進(jìn)行下一步判斷,是否需要調(diào)用ScaleUp或者ScaleDown進(jìn)行擴縮容控制。

2.2.2. ScaleUp

ScaleUp是AutoScaler評估后需要執(zhí)行擴容操作后調(diào)用的模塊,其流程圖如下:

wKgaomaLws2API9VAAHF-yNDGqg778.png

從流程圖中可以看到,當(dāng)AutoScaler檢測到需要進(jìn)行擴容操作后,ScaleUp還是會進(jìn)行一些基礎(chǔ)檢查,如當(dāng)前計算節(jié)點數(shù)量是否達(dá)到最大限制、擴容后資源是否超限等前置檢查。然后通過調(diào)用Estimator,進(jìn)行Pod預(yù)調(diào)度,進(jìn)行擴容決策,最終選出一個NodeGroup,從該NodeGroup中申請節(jié)點對k8s集群進(jìn)行擴容。

當(dāng)集群中有多個 Node Group可供選擇時,可以通過expander選項配置選擇 Node Group的策略,支持如下三種方式:

random:隨機選擇;

most-pods:選擇容量最大(可以創(chuàng)建最多 Pod)的 Node Group;

least-waste:以最小浪費原則選擇,即選擇有最少可用資源的 Node Group。

2.2.3. ScaleDown

ScaleDown是AutoScaler評估后需要執(zhí)行縮容操作后調(diào)用的模塊,其流程圖如下:

wKgaomaLwu-ASLHNAAH3NzVIHOs906.png

從流程圖中可以看出,縮容也會進(jìn)行前置檢查。縮容過程中最重要的是檢查需要驅(qū)逐pod再移除相應(yīng)節(jié)點的流程。當(dāng)節(jié)點上需要驅(qū)逐Pod才能回收時,會調(diào)用Simulator模擬Pod驅(qū)逐,為被需要驅(qū)逐的Pod尋找可調(diào)度節(jié)點。由于在刪除worker節(jié)點時會發(fā)生Pod重新調(diào)度的情況,所以應(yīng)用必須可以容忍重新調(diào)度和短時的中斷(比如使用多副本的 Deployment),當(dāng)滿足以下條件時,worker節(jié)點不會刪除:

節(jié)點上有pod被PodDisruptionBudget(PDB)控制器限制,PDB是k8s中的一種資源,它為 Pod提供了一種保護(hù)機制;

節(jié)點上有命名空間是kube-system的pods;

節(jié)點上的pod不是被控制器創(chuàng)建,例如不是被deployment, replicaset, job, statefulset創(chuàng)建;

Pod使用了本地存儲;

節(jié)點上pod驅(qū)逐后無處可去,即沒有其他worker節(jié)點能調(diào)度這個pod;

節(jié)點有注解:”cluster-autoscaler.kubernetes.io/scale-down-disabled“:“true”,可以通過給節(jié)點打上特定注解保證節(jié)點不被Cluster AutoScaler刪除;

配置 `cluster-autoscaler.kubernetes.io/safe-to-evict=false注解,可以確保 pod不被驅(qū)逐,pod所在 worker節(jié)點不被縮減。

2.2.4 Yusur Cloud Provider

yusurCloudProvider會在Cluster AutoScaler初始化的過程中進(jìn)行注冊NodeGroup信息,在執(zhí)行ScaleUp和ScaleDown后得到實際的調(diào)用。其具體流程如下:

wKgaomaLwxKAVyveAAIfPK4zIpc747.png

其中將裸金屬資源添加到集群共享資源池(NodeGroup),可以根據(jù)指定規(guī)則(如機型、CPU等)將其劃分為多個組。每個 NodeGroup需要包含當(dāng)前組中機器的詳細(xì)配置,用于擴容過程中的模擬調(diào)度。

擴容與縮容操作中,裸金屬實例的生命周期由BareMetalManager控制。

3. 方案優(yōu)勢

本解決方案針對傳統(tǒng)云環(huán)境中資源池獨立管理的挑戰(zhàn),提出了創(chuàng)新的資源共池管理機制,旨在大幅提升資源的靈活性、效率和利用率,以下是該方案的三大核心優(yōu)勢:

3.1. 增強業(yè)務(wù)可擴展性與彈性

該方案通過構(gòu)建統(tǒng)一的資源池,打破了不同資源類型之間的界限,實現(xiàn)了資源的動態(tài)調(diào)配與共享。當(dāng)某一資源類型(如虛擬機)面臨資源瓶頸時,系統(tǒng)能夠自動從共享資源池中申請額外資源,快速擴容以滿足業(yè)務(wù)需求。反之,在資源空閑時,又能自動縮容,將多余的資源節(jié)點歸還至共享池,避免了資源浪費。這種機制顯著增強了業(yè)務(wù)的可擴展性和彈性,使得企業(yè)能夠更加從容地應(yīng)對業(yè)務(wù)波動和突發(fā)流量,提高服務(wù)的連續(xù)性和用戶滿意度。

3.2. 提升資源分配的靈活性與效率

通過資源共池管理,實現(xiàn)了資源的自動化和智能化分配,顯著提升了資源分配的靈活性與效率。不再局限于固定資源池的限制,系統(tǒng)能夠根據(jù)實時的資源需求和業(yè)務(wù)負(fù)載,自動在共享資源池中尋找最優(yōu)的資源匹配,進(jìn)行即時的資源調(diào)度。這種動態(tài)分配機制不僅簡化了資源管理的復(fù)雜度,還極大地提高了資源分配的精準(zhǔn)度和響應(yīng)速度,使得資源能夠更加高效地服務(wù)于業(yè)務(wù)需求,減少人為干預(yù),提升整體運維效率。

3.3. 最大化資源利用率,降低成本

云原生計算資源共池管理解決方案通過打破資源池之間的壁壘,實現(xiàn)了資源的全局優(yōu)化與共享,有效解決了資源孤島問題,大幅提高了資源的整體利用率。在傳統(tǒng)模式下,由于資源池的獨立管理,資源分配往往呈現(xiàn)出不均衡狀態(tài),導(dǎo)致部分資源長期閑置。而共池管理方案能夠根據(jù)實際需求動態(tài)調(diào)整資源分配,避免了資源的冗余和浪費,從而顯著降低了企業(yè)的運營成本。此外,通過智能的資源調(diào)度算法,該方案還能進(jìn)一步挖掘資源潛力,提升資源使用效率,為企業(yè)帶來更大的經(jīng)濟效益。

基于DPU的云原生計算資源共池管理解決方案通過實現(xiàn)資源的統(tǒng)一管理、動態(tài)調(diào)配與智能優(yōu)化,有效解決了傳統(tǒng)云環(huán)境中資源管理的痛點,為構(gòu)建更加靈活、高效和經(jīng)濟的云基礎(chǔ)設(shè)施提供了有力支撐。

本方案來自于中科馭數(shù)軟件研發(fā)團(tuán)隊,團(tuán)隊核心由一群在云計算、數(shù)據(jù)中心架構(gòu)、高性能計算領(lǐng)域深耕多年的業(yè)界資深架構(gòu)師和技術(shù)專家組成,不僅擁有豐富的實戰(zhàn)經(jīng)驗,還對行業(yè)趨勢具備敏銳的洞察力,該團(tuán)隊致力于探索、設(shè)計、開發(fā)、推廣可落地的高性能云計算解決方案,幫助最終客戶加速數(shù)字化轉(zhuǎn)型,提升業(yè)務(wù)效能,同時降低運營成本。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 云計算
    +關(guān)注

    關(guān)注

    39

    文章

    7800

    瀏覽量

    137401
  • DPU
    DPU
    +關(guān)注

    關(guān)注

    0

    文章

    358

    瀏覽量

    24179
  • 云原生
    +關(guān)注

    關(guān)注

    0

    文章

    249

    瀏覽量

    7950
  • kubernetes
    +關(guān)注

    關(guān)注

    0

    文章

    224

    瀏覽量

    8716
收藏 人收藏

    評論

    相關(guān)推薦

    基于DPU與SmartNic的云原生SDN解決方案

    隨著云計算,大數(shù)據(jù)和人工智能等技術(shù)的蓬勃發(fā)展,數(shù)據(jù)中心面臨著前所未有的數(shù)據(jù)洪流和計算壓力,這對SDN提出了更高的性能和效率要求。自云原生概念被提出以來,Kubernetes為云原生應(yīng)用
    的頭像 發(fā)表于 07-22 11:44 ?700次閱讀
    基于<b class='flag-5'>DPU</b>與SmartNic的<b class='flag-5'>云原生</b>SDN<b class='flag-5'>解決方案</b>

    只需 6 步,你就可以搭建一個云原生操作系統(tǒng)原型

    的幫助,提供什么樣的解決方案。另外一個方面,云原生 SIG 也會負(fù)責(zé)拉通龍蜥社區(qū)內(nèi)部的其他相關(guān)的技術(shù) SIG。比如會協(xié)同 機密容器 SIG、高性能存儲 SIG、容器網(wǎng)絡(luò) SIG 以及容器 OS SIG
    發(fā)表于 09-15 14:01

    源于TI領(lǐng)域的“云原生計算”對于推動5G網(wǎng)絡(luò)發(fā)展有什么好處?

    源于TI領(lǐng)域的“云原生計算”對于推動5G網(wǎng)絡(luò)發(fā)展有什么好處?
    的頭像 發(fā)表于 07-16 15:06 ?3395次閱讀
    源于TI領(lǐng)域的“<b class='flag-5'>云原生計算</b>”對于推動5G網(wǎng)絡(luò)發(fā)展有什么好處?

    云原生計算對這三個熱門市場的影響

    云原生計算如今正在成為業(yè)界最大和最具影響力的云計算范例。人們需要對其進(jìn)行了解。
    的頭像 發(fā)表于 09-28 02:27 ?2368次閱讀

    華為Volcano項目為構(gòu)建云原生批量計算平臺奠定基礎(chǔ)

    4月10日,CNCF(云原生計算基金會)正式接納由華為云捐贈的容器批量計算項目Volcano, 迎來CNCF首個容器批量計算項目。Volcano項目的加入,將CNCF的云原生版圖進(jìn)一步
    的頭像 發(fā)表于 04-17 14:26 ?2538次閱讀

    云原生2.0時代 我們還要做什么?

    華為云自2015年以創(chuàng)始會員的身份參與了云原生計算基金會的組建,在過去的這5年時間里,華為云全面見證了云原生技術(shù)和產(chǎn)業(yè)的興起和發(fā)展:開源項目能力的完善期、云原生產(chǎn)業(yè)的發(fā)展與融合期,再到如今,
    的頭像 發(fā)表于 12-21 13:36 ?1828次閱讀

    從云計算的初心嘗試談?wù)勈裁词钦嬲?b class='flag-5'>云原生

    不同云廠商的說法。2020年9月,阿里云成立了云原生技術(shù)委員會,今天我就從云計算的初心嘗試談?wù)勈裁词钦嬲?b class='flag-5'>云原生。 狹義的云原生 讓我們先回顧云原生
    的頭像 發(fā)表于 02-12 09:20 ?1980次閱讀

    一種5G網(wǎng)絡(luò)云原生應(yīng)用資源調(diào)度優(yōu)化策略

    隨著5G網(wǎng)絡(luò)和云原生技術(shù)的發(fā)展,面向服務(wù)的5G云原生核心網(wǎng)應(yīng)運而生,傳統(tǒng)應(yīng)用正朝著云原生化方向發(fā)展。目前云原生服務(wù)提供商和云原生應(yīng)用商數(shù)量眾
    發(fā)表于 04-29 11:25 ?9次下載
    一種5G網(wǎng)絡(luò)<b class='flag-5'>云原生</b>應(yīng)用<b class='flag-5'>資源</b>調(diào)度優(yōu)化策略

    云原生的目的是構(gòu)建和運行可彈性擴展的應(yīng)用

    CNCF,The Cloud Native Computing Foundation的縮寫,云原生計算基金會。這是業(yè)界首個以云原生為主題的組織。 本文摘錄自“云原生計算研究報告”,內(nèi)容重點分析了微服
    的頭像 發(fā)表于 11-08 16:25 ?2013次閱讀
    <b class='flag-5'>云原生</b>的目的是構(gòu)建和運行可彈性擴展的應(yīng)用

    Volcano:云原生高性能批量計算平臺

    云原生時代,Kubernetes(K8s) 已經(jīng)成為云原生應(yīng)用編排、管理的事實標(biāo)準(zhǔn),越來越多的應(yīng)用選擇向 Kubernetes 遷移。 在 CAE 仿真、動漫渲染、物理化學(xué)、石油勘探、生命科學(xué)、氣象
    發(fā)表于 12-07 15:33 ?680次閱讀
    Volcano:<b class='flag-5'>云原生</b>高性能批量<b class='flag-5'>計算</b>平臺

    華為電信云原生解決方案助力運營商解決網(wǎng)絡(luò)云原生化痛點

    近日,由著名國際電信行業(yè)媒體Total Telecom舉辦的亞洲通信大獎(Asia Communication Awards)頒獎典禮在線上舉行,華為電信云原生解決方案榮獲“網(wǎng)絡(luò)功能虛擬化創(chuàng)新獎(NFV Innovation Award)”。
    的頭像 發(fā)表于 12-22 13:52 ?4245次閱讀

    中科馭數(shù)亮相openEuler Summit 2022 探討DPU云原生網(wǎng)絡(luò)的場景應(yīng)用

    當(dāng)日下午舉辦的“虛擬化云原生”分論壇,分享DPU云原生時代的創(chuàng)新應(yīng)用與解決方案實踐。 openEuler Summit 是由歐拉開源社區(qū)發(fā)起并舉辦的年度開源操作系統(tǒng)峰會。openEu
    的頭像 發(fā)表于 01-03 12:27 ?1464次閱讀

    中科馭數(shù)攜手DaoCloud道客開拓DPU云原生計算場景的應(yīng)用

    打造基于 DPU+云原生的產(chǎn)品和聯(lián)合方案,通過技術(shù)融合增強行業(yè)技術(shù)影響力和產(chǎn)品市場競爭力,同時進(jìn)一步推動國產(chǎn)信息自主創(chuàng)新領(lǐng)域 DPU云原生
    的頭像 發(fā)表于 04-20 09:31 ?1157次閱讀

    中科馭數(shù)分析DPU云原生網(wǎng)絡(luò)與智算網(wǎng)絡(luò)中的實際應(yīng)用

    CCF Chip 2024,精彩不能停!7月21日下午,中科馭數(shù)在第二屆中國計算機學(xué)會(CCF)芯片大會的“馭數(shù)專屬時刻”仍在繼續(xù),馭數(shù)組織承辦“DPU技術(shù)趨勢和應(yīng)用——DPU云原生
    的頭像 發(fā)表于 08-02 11:21 ?710次閱讀

    什么是云原生MLOps平臺

    云原生MLOps平臺,是指利用云計算的基礎(chǔ)設(shè)施和開發(fā)工具,來構(gòu)建、部署和管理機器學(xué)習(xí)模型的全生命周期的平臺。以下,是對云原生MLOps平臺的介紹,由AI部落小編整理。
    的頭像 發(fā)表于 12-12 13:13 ?103次閱讀
    主站蜘蛛池模板: 日韩欧美中文在线| 久久免费手机视频| 国产 日韩 欧美 高清| 手机看片国产免费永久| 在线毛片免费| 日本三级在线| 亚洲久久久| 亚洲黄网免费| 日本成片视频| 天天插天天插天天插| 亚洲日本视频| 欧美a一| 天天摸日日干| 免费看黄视频网站| 毛片黄| 可以在线看黄的网站| 嘿嘿嘿视频在线观看| 六九视频在线观看| 国产小视频免费看| 亚洲成人精品在线| 6080yy午夜不卡一二三区| 五月激情综合丁香色婷婷| 国产卡一卡2卡三卡免费视频| 国产小视频在线观看| 亚洲开心激情网| 波多野结衣在线网站| 操熟逼| 99久久99久久| 色综合天天综合网国产人| 免费看三级黄色片| 免费看曰批女人爽的视频网址| 最近2018中文字幕2019视频| 国产视频三区| 国产成人啪午夜精品网站男同| 日韩一级视频免费观看| 天天插天天爱| 亚洲人成电影综合网站色| 夜夜操网| 中文天堂最新版资源新版天堂资源| 国产精品视频第一区二区三区| 丁香激情六月天|