在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

e2studio開發磁力計LIS2MDL(1)----輪詢獲取磁力計數據

RA生態工作室 ? 2024-08-09 15:14 ? 次閱讀

來源:嵌入式單片機MCU開發

概述

本文將介紹如何使用 LIS2MDL 傳感器來讀取數據。主要步驟包括初始化傳感器接口、驗證設備ID、配置傳感器的數據輸出率和濾波器,以及通過輪詢方式持續讀取磁力數據和溫度數據。讀取到的數據會被轉換為適當的單位并通過串行通信輸出。 這個傳感器常用于多種電子設備中,以提供精確的磁場強度數據,從而用于指南針應用、位置追蹤或者動作檢測等功能。

速率

該模塊支持的速度為普通模式(100k)、快速模式(400k)、快速模式+(1M)、高速模式(3.4M)。

新建工程

工程模板

保存工程路徑

芯片配置

本文中使用R7FA4M2AD3CFL來進行演示。

工程模板選擇

時鐘設置

開發板上的外部高速晶振為12M.

需要修改XTAL為12M。

UART配置

點擊Stacks->New Stack->Driver->Connectivity -> UART Driver on r_sci_uart。

UART屬性配置

設置e2studio堆棧

printf函數通常需要設置堆棧大小。這是因為printf函數在運行時需要使用棧空間來存儲臨時變量和函數調用信息。如果堆棧大小不足,可能會導致程序崩潰或不可預期的行為。
printf函數使用了可變參數列表,它會在調用時使用棧來存儲參數,在函數調用結束時再清除參數,這需要足夠的棧空間。另外printf也會使用一些臨時變量,如果棧空間不足,會導致程序崩潰。
因此,為了避免這類問題,應該根據程序的需求來合理設置堆棧大小。

e2studio的重定向printf設置

嵌入式系統的開發中,尤其是在使用GNU編譯器集合(GCC)時,–specs 參數用于指定鏈接時使用的系統規格(specs)文件。這些規格文件控制了編譯器和鏈接器的行為,尤其是關于系統庫和啟動代碼的鏈接。–specs=rdimon.specs 和 --specs=nosys.specs 是兩種常見的規格文件,它們用于不同的場景。
–specs=rdimon.specs
用途: 這個選項用于鏈接“Redlib”庫,這是為裸機(bare-metal)和半主機(semihosting)環境設計的C庫的一個變體。半主機環境是一種特殊的運行模式,允許嵌入式程序通過宿主機(如開發PC)的調試器進行輸入輸出操作。
應用場景: 當你需要在沒有完整操作系統的環境中運行程序,但同時需要使用調試器來處理輸入輸出(例如打印到宿主機的終端),這個選項非常有用。
特點: 它提供了一些基本的系統調用,通過調試接口與宿主機通信。
–specs=nosys.specs
用途: 這個選項鏈接了一個非常基本的系統庫,這個庫不提供任何系統服務的實現。
應用場景: 適用于完全的裸機程序,其中程序不執行任何操作系統調用,比如不進行文件操作或者系統級輸入輸出。
特點: 這是一個更“裸”的環境,沒有任何操作系統支持。使用這個規格文件,程序不期望有操作系統層面的任何支持。
如果你的程序需要與宿主機進行交互(如在開發期間的調試),并且通過調試器進行基本的輸入輸出操作,則使用 --specs=rdimon.specs。
如果你的程序是完全獨立的,不需要任何形式的操作系統服務,包括不進行任何系統級的輸入輸出,則使用 --specs=nosys.specs。

R_SCI_UART_Open()函數原型

故可以用 R_SCI_UART_Open()函數進行配置,開啟和初始化UART。

/* Open the transfer instance with initial configuration. */ err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg); assert(FSP_SUCCESS == err);

回調函數user_uart_callback ()

當數據發送的時候,可以查看UART_EVENT_TX_COMPLETE來判斷是否發送完畢。

可以檢查檢查 "p_args" 結構體中的 "event" 字段的值是否等于 "UART_EVENT_TX_COMPLETE"。如果條件為真,那么 if 語句后面的代碼塊將會執行。

fsp_err_t err = FSP_SUCCESS; volatile bool uart_send_complete_flag = false; void user_uart_callback (uart_callback_args_t * p_args) { if(p_args- >event == UART_EVENT_TX_COMPLETE) { uart_send_complete_flag = true; } }

printf輸出重定向到串口

打印最常用的方法是printf,所以要解決的問題是將printf的輸出重定向到串口,然后通過串口將數據發送出去。 注意一定要加上頭文件#include

#ifdef __GNUC__ //串口重定向 #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif PUTCHAR_PROTOTYPE { err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1); if(FSP_SUCCESS != err) __BKPT(); while(uart_send_complete_flag == false){} uart_send_complete_flag = false; return ch; } int _write(int fd,char *pBuffer,int size) { for(int i=0;i< size;i++) { __io_putchar(*pBuffer++); } return size; }

通信模式

對于LIS2MDL,可以使用SPI或者IIC進行通訊。 最小系統圖如下所示。

在CS管腳為1的時候,為IIC模式

本文使用的板子原理圖如下所示。

CS對應到RA4M2板子上的端口為P014。

配置為輸出管腳。

R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_14, BSP_IO_LEVEL_HIGH);

IIC屬性配置

查看手冊,可以得知LIS2MDL的IIC地址為“0011110” ,即0x1E

IIC配置

配置RA4M2的I2C接口,使其作為I2C master進行通信。 查看開發板原理圖,對應的IIC為P407和P408。

點擊Stacks->New Stack->Connectivity -> I2C Master(r_iic_master)。

設置IIC的配置,需要注意從機的地址。

R_IIC_MASTER_Open()函數原型

R_IIC_MASTER_Open()函數為執行IIC初始化,開啟配置如下所示。

/* Initialize the I2C module */ err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg); /* Handle any errors. This function should be defined by the user. */ assert(FSP_SUCCESS == err);

R_IIC_MASTER_Write()函數原型

R_IIC_MASTER_Write()函數是向IIC設備中寫入數據,寫入格式如下所示。

err = R_IIC_MASTER_Write(&g_i2c_master0_ctrl, ?, 1, true); assert(FSP_SUCCESS == err);

R_IIC_MASTER_Read()函數原型

R_SCI_I2C_Read()函數是向IIC設備中讀取數據,讀取格式如下所示。

/* Read data from I2C slave */ err = R_IIC_MASTER_Read(&g_i2c_master0_ctrl, bufp, len, false); assert(FSP_SUCCESS == err);

sci_i2c_master_callback()回調函數

對于數據是否發送完畢,可以查看是否獲取到I2C_MASTER_EVENT_TX_COMPLETE字段。

/* Callback function */ i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED; uint32_t timeout_ms = 100000; void sci_i2c_master_callback(i2c_master_callback_args_t *p_args) { i2c_event = I2C_MASTER_EVENT_ABORTED; if (NULL != p_args) { /* capture callback event for validating the i2c transfer event*/ i2c_event = p_args- >event; } }

參考程序

https://github.com/STMicroelectronics/lis2mdl-pid

初始換管腳

使能CS為高電平,配置為IIC模式。

R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_14, BSP_IO_LEVEL_HIGH); /* Initialize the I2C module */ err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg); /* Handle any errors. This function should be defined by the user. */ assert(FSP_SUCCESS == err); /* Initialize mems driver interface */ stmdev_ctx_t dev_ctx; dev_ctx.write_reg = platform_write; dev_ctx.read_reg = platform_read; dev_ctx.handle = &SENSOR_BUS; /* Wait sensor boot time */ platform_delay(BOOT_TIME);

獲取ID

可以向WHO_AM_I (4Fh)獲取固定值,判斷是否為0x40

is2mdl_device_id_get為獲取函數。

對應的獲取ID驅動程序,如下所示。

/* Wait sensor boot time */ platform_delay(BOOT_TIME); /* Check device ID */ lis2mdl_device_id_get(&dev_ctx, &whoamI); printf("LIS2MDL_ID=0x%x,whoamI=0x%xn",LIS2MDL_ID,whoamI); if (whoamI != LIS2MDL_ID) while (1) { /* manage here device not found */ }

復位操作

可以向CFG_REG_A (60h)的SOFT_RST寄存器寫入1進行復位。

lis2mdl_reset_set為重置函數。

對應的驅動程序,如下所示。

/* Restore default configuration */ lis2mdl_reset_set(&dev_ctx, PROPERTY_ENABLE); do { lis2mdl_reset_get(&dev_ctx, &rst); } while (rst);

BDU設置

在很多傳感器中,數據通常被存儲在輸出寄存器中,這些寄存器分為兩部分:MSB和LSB。這兩部分共同表示一個完整的數據值。例如,在一個加速度計中,MSB和LSB可能共同表示一個加速度的測量值。
連續更新模式(BDU = ‘0’):在默認模式下,輸出寄存器的值會持續不斷地被更新。這意味著在你讀取MSB和LSB的時候,寄存器中的數據可能會因為新的測量數據而更新。這可能導致一個問題:當你讀取MSB時,如果寄存器更新了,接下來讀取的LSB可能就是新的測量值的一部分,而不是與MSB相對應的值。這樣,你得到的就是一個“拼湊”的數據,它可能無法準確代表任何實際的測量時刻。
塊數據更新(BDU)模式(BDU = ‘1’):當激活BDU功能時,輸出寄存器中的內容不會在讀取MSB和LSB之間更新。這就意味著一旦開始讀取數據(無論是先讀MSB還是LSB),寄存器中的那一組數據就被“鎖定”,直到兩部分都被讀取完畢。這樣可以確保你讀取的MSB和LSB是同一測量時刻的數據,避免了讀取到代表不同采樣時刻的數據。
簡而言之,BDU位的作用是確保在讀取數據時,輸出寄存器的內容保持穩定,從而避免讀取到拼湊或錯誤的數據。這對于需要高精度和穩定性的應用尤為重要。
可以向CTRL3 (12h)的BDU寄存器寫入1進行開啟。

對應的驅動程序,如下所示。

/* Enable Block Data Update */ lis2mdl_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

設置速率

速率可以通過CFG_REG_A (60h)的ODR設置速率。

設置速率可以使用如下函數。

/* Set Output Data Rate */ lis2mdl_data_rate_set(&dev_ctx, LIS2MDL_ODR_10Hz);

啟用偏移消除

LIS2MDL 磁力計的配置寄存器(CFG_REG_B)的OFF_CANC - 這個位用于啟用或禁用偏移消除。
這意味著每次磁力計準備輸出新的測量數據時,它都會自動進行偏移校準,以確保數據的準確性。這通常用于校準傳感器,以消除由于傳感器偏移或環境因素引起的任何誤差。

/* Set / Reset sensor mode */ lis2mdl_set_rst_mode_set(&dev_ctx, LIS2MDL_SENS_OFF_CANC_EVERY_ODR);

開啟溫度補償

開啟溫度補償可以通過CFG_REG_A (60h)的COMP_TEMP_EN進行配置。

/* Enable temperature compensation */ lis2mdl_offset_temp_comp_set(&dev_ctx, PROPERTY_ENABLE);

設置為連續模式

LIS2MDL 磁力計 CFG_REG_A (60h) 配置寄存器的MD1 和 MD0 - 這兩個位用于選擇設備的工作模式。
00 - 連續模式,設備連續進行測量并將結果放在數據寄存器中。
01 - 單次模式,設備進行單次測量,然后返回到空閑模式。
10 和 11 - 空閑模式,設備被置于空閑模式,但I2C和SPI接口仍然激活

/* Set device in continuous mode */ lis2mdl_operating_mode_set(&dev_ctx, LIS2MDL_CONTINUOUS_MODE);

輪詢讀取數據

對于數據是否準備好,可以查看STATUS_REG (67h)的Zyxda位,判斷是否有新數據到達。

uint8_t reg; /* Read output only if new value is available */ lis2mdl_mag_data_ready_get(&dev_ctx, ?);

數據OUTX_L_REG(68h)-OUTZ_H_REG(6Dh)獲取。

/* Read magnetic field data */ memset(data_raw_magnetic, 0x00, 3 * sizeof(int16_t)); lis2mdl_magnetic_raw_get(&dev_ctx, data_raw_magnetic); magnetic_mG[0] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[0]); magnetic_mG[1] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[1]); magnetic_mG[2] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[2]);

主程序

#include "hal_data.h" #include < stdio.h > #include "lis2mdl_reg.h" fsp_err_t err = FSP_SUCCESS; volatile bool uart_send_complete_flag = false; void user_uart_callback (uart_callback_args_t * p_args) { if(p_args- >event == UART_EVENT_TX_COMPLETE) { uart_send_complete_flag = true; } } /* Callback function */ i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED; uint32_t timeout_ms = 100000; void sci_i2c_master_callback(i2c_master_callback_args_t *p_args) { i2c_event = I2C_MASTER_EVENT_ABORTED; if (NULL != p_args) { /* capture callback event for validating the i2c transfer event*/ i2c_event = p_args- >event; } } #ifdef __GNUC__ //串口重定向 #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif PUTCHAR_PROTOTYPE { err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1); if(FSP_SUCCESS != err) __BKPT(); while(uart_send_complete_flag == false){} uart_send_complete_flag = false; return ch; } int _write(int fd,char *pBuffer,int size) { for(int i=0;i< size;i++) { __io_putchar(*pBuffer++); } return size; } FSP_CPP_HEADER void R_BSP_WarmStart(bsp_warm_start_event_t event); FSP_CPP_FOOTER #define SENSOR_BUS g_i2c_master0_ctrl /* Private macro -------------------------------------------------------------*/ #define BOOT_TIME 20 //ms /* Private variables ---------------------------------------------------------*/ static int16_t data_raw_magnetic[3]; static int16_t data_raw_temperature; static float magnetic_mG[3]; static float temperature_degC; static uint8_t whoamI, rst; static uint8_t tx_buffer[1000]; /* Extern variables ----------------------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /* * WARNING: * Functions declare in this section are defined at the end of this file * and are strictly related to the hardware platform used. * */ static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp, uint16_t len); static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp, uint16_t len); static void tx_com(uint8_t *tx_buffer, uint16_t len); static void platform_delay(uint32_t ms); static void platform_init(void); /*******************************************************************************************************************//** * main() is generated by the RA Configuration editor and is used to generate threads if an RTOS is used. This function * is called by main() when no RTOS is used. **********************************************************************************************************************/ void hal_entry(void) { /* TODO: add your own code here */ /* Open the transfer instance with initial configuration. */ err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg); assert(FSP_SUCCESS == err); printf("hello world!n"); R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_14, BSP_IO_LEVEL_HIGH); /* Initialize the I2C module */ err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg); /* Handle any errors. This function should be defined by the user. */ assert(FSP_SUCCESS == err); /* Initialize mems driver interface */ stmdev_ctx_t dev_ctx; dev_ctx.write_reg = platform_write; dev_ctx.read_reg = platform_read; dev_ctx.handle = &SENSOR_BUS; /* Wait sensor boot time */ platform_delay(BOOT_TIME); /* Check device ID */ lis2mdl_device_id_get(&dev_ctx, &whoamI); printf("LIS2MDL_ID=0x%x,whoamI=0x%xn",LIS2MDL_ID,whoamI); if (whoamI != LIS2MDL_ID) while (1) { /* manage here device not found */ } /* Restore default configuration */ lis2mdl_reset_set(&dev_ctx, PROPERTY_ENABLE); do { lis2mdl_reset_get(&dev_ctx, &rst); } while (rst); /* Enable Block Data Update */ lis2mdl_block_data_update_set(&dev_ctx, PROPERTY_ENABLE); /* Set Output Data Rate */ lis2mdl_data_rate_set(&dev_ctx, LIS2MDL_ODR_10Hz); /* Set / Reset sensor mode */ lis2mdl_set_rst_mode_set(&dev_ctx, LIS2MDL_SENS_OFF_CANC_EVERY_ODR); /* Enable temperature compensation */ lis2mdl_offset_temp_comp_set(&dev_ctx, PROPERTY_ENABLE); /* Set device in continuous mode */ lis2mdl_operating_mode_set(&dev_ctx, LIS2MDL_CONTINUOUS_MODE); while (1) { uint8_t reg; /* Read output only if new value is available */ lis2mdl_mag_data_ready_get(&dev_ctx, ?); if (reg) { /* Read magnetic field data */ memset(data_raw_magnetic, 0x00, 3 * sizeof(int16_t)); lis2mdl_magnetic_raw_get(&dev_ctx, data_raw_magnetic); magnetic_mG[0] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[0]); magnetic_mG[1] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[1]); magnetic_mG[2] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[2]); printf("Magnetic field [mG]:%4.2ft%4.2ft%4.2frn",magnetic_mG[0], magnetic_mG[1], magnetic_mG[2]); /* Read temperature data */ memset(&data_raw_temperature, 0x00, sizeof(int16_t)); lis2mdl_temperature_raw_get(&dev_ctx, &data_raw_temperature); temperature_degC = lis2mdl_from_lsb_to_celsius(data_raw_temperature); printf("Temperature [degC]:%6.2frn",temperature_degC); } R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS); } #if BSP_TZ_SECURE_BUILD /* Enter non-secure code */ R_BSP_NonSecureEnter(); #endif }

演示

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2552

    文章

    51275

    瀏覽量

    755048
  • Studio
    +關注

    關注

    2

    文章

    190

    瀏覽量

    28742
  • 磁力計
    +關注

    關注

    1

    文章

    71

    瀏覽量

    20903
收藏 人收藏

    評論

    相關推薦

    十軸姿態傳感器模塊 | 集成加速度、陀螺儀、磁力計,自帶BLE5.0藍牙

    海凌科全新推出HLK-AS2001十軸姿態傳感器模塊,集成加速度、陀螺儀和磁力計,自帶BLE5.0藍牙,開發簡單,應用廣泛。什么是十軸姿態傳感器模塊?HLK-AS2001十軸姿態傳感器模塊是海凌科
    的頭像 發表于 01-06 12:47 ?153次閱讀
    十軸姿態傳感器模塊 | 集成加速度<b class='flag-5'>計</b>、陀螺儀、<b class='flag-5'>磁力計</b>,自帶BLE5.0藍牙

    陀螺儀LSM6DSV16X與AI集成(11)----融合磁力計進行姿態解算

    MotionFX庫包含用于校準陀螺儀、加速度磁力計傳感器的例程。 將磁力計數據與加速度和陀螺儀的
    的頭像 發表于 09-06 16:57 ?2024次閱讀
    陀螺儀LSM6DSV16X與AI集成(11)----融合<b class='flag-5'>磁力計</b>進行姿態解算

    陀螺儀LSM6DSV16X與AI集成(10)----獲取磁力計數據

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數據。主要步驟包括初始化傳感器接口、驗證設備ID、配置傳感器的數據輸出率和濾波器,以及通過輪詢方式持續讀取
    的頭像 發表于 09-02 14:31 ?1197次閱讀
    陀螺儀LSM6DSV16X與AI集成(10)----<b class='flag-5'>獲取</b><b class='flag-5'>磁力計數據</b>

    磁力計LIS2MDL開發(4)----MotionMC 執行磁力計校準

    運行的輕量級算法,能夠在系統運行期間進行動態校準,確保磁力計的輸出數據始終準確可靠。 在本文中,將介紹如何使用LIS2MDL磁力計與MotionMC庫執行
    的頭像 發表于 08-26 10:56 ?1570次閱讀
    <b class='flag-5'>磁力計</b><b class='flag-5'>LIS2MDL</b><b class='flag-5'>開發</b>(4)----MotionMC 執行<b class='flag-5'>磁力計</b>校準

    驅動LSM6DS3TR-C實現高效運動檢測與數據采集(11)----磁力計校準

    磁力計校準是確保傳感器數據準確性和可靠性的關鍵步驟。磁力計用于測量地球磁場,并在導航、定位、姿態測量等應用中起到重要作用。然而,磁力計在使用過程中會受到環境磁場、硬件偏差、安裝誤差等因
    的頭像 發表于 08-23 09:57 ?641次閱讀
    驅動LSM6DS3TR-C實現高效運動檢測與<b class='flag-5'>數據</b>采集(11)----<b class='flag-5'>磁力計</b>校準

    陀螺儀LSM6DSOW開發(6)----獲取磁力計數據

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數據。主要步驟包括初始化傳感器接口、驗證設備ID、配置傳感器的數據輸出率和濾波器,以及通過輪詢方式持續讀取
    的頭像 發表于 08-19 18:25 ?1154次閱讀
    陀螺儀LSM6DSOW<b class='flag-5'>開發</b>(6)----<b class='flag-5'>獲取</b><b class='flag-5'>磁力計數據</b>

    e2studio開發三軸加速度LIS2DW12(1)----輪詢獲取加速度數據

    本文將介紹如何驅動和利用LIS2DW12傳感器,實現精確的運動感應功能。 IS2DW12是一款高性能、超低功耗的三軸線性加速度,屬于“femto”系列,利用了成熟的微機械加速度
    的頭像 發表于 08-09 14:54 ?1651次閱讀
    <b class='flag-5'>e2studio</b><b class='flag-5'>開發</b>三軸加速度<b class='flag-5'>計</b><b class='flag-5'>LIS2</b>DW12(<b class='flag-5'>1</b>)----<b class='flag-5'>輪詢</b><b class='flag-5'>獲取</b>加速度<b class='flag-5'>數據</b>

    驅動LSM6DS3TR-C實現高效運動檢測與數據采集(10)----融合磁力計進行姿態解算

    MotionFX庫包含用于校準陀螺儀、加速度磁力計傳感器的例程。 將磁力計數據與加速度和陀螺儀的
    的頭像 發表于 08-02 15:50 ?2289次閱讀
    驅動LSM6DS3TR-C實現高效運動檢測與<b class='flag-5'>數據</b>采集(10)----融合<b class='flag-5'>磁力計</b>進行姿態解算

    驅動LSM6DS3TR-C實現高效運動檢測與數據采集(9)----獲取磁力計數據

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數據。主要步驟包括初始化傳感器接口、驗證設備ID、配置傳感器的數據輸出率和濾波器,以及通過輪詢方式持續讀取
    的頭像 發表于 08-02 15:47 ?756次閱讀
    驅動LSM6DS3TR-C實現高效運動檢測與<b class='flag-5'>數據</b>采集(9)----<b class='flag-5'>獲取</b><b class='flag-5'>磁力計數據</b>

    腦磁圖(MEG)新型技術及功能特點-多通道光泵磁力計便攜平臺

    腦磁圖(MEG)新型技術及功能特點多通道光泵磁力計便攜平臺腦磁圖(MEG)發展背景前景介紹腦磁圖(MEG)通過評估神經電流產生的磁場來測量大腦功能。傳統的MEG使用超導傳感器,這對性能、實用性和部署
    的頭像 發表于 06-06 08:16 ?1024次閱讀
    腦磁圖(MEG)新型技術及功能特點-多通道光泵<b class='flag-5'>磁力計</b>便攜平臺

    e2studio開發磁力計LIS2MDL(2)----電子羅盤

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數據來轉化為指南針。 地磁場強度范圍約為 23,000 至 66,000 nT ,并且可以建模為磁偶極子,其場線起源于地球地理南部附近的點,并終止
    的頭像 發表于 05-16 17:00 ?499次閱讀
    <b class='flag-5'>e2studio</b><b class='flag-5'>開發</b><b class='flag-5'>磁力計</b><b class='flag-5'>LIS2MDL</b>(<b class='flag-5'>2</b>)----電子羅盤

    e2studio開發磁力計LIS2MDL(1)----輪詢獲取磁力計數據

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數據。主要步驟包括初始化傳感器接口、驗證設備ID、配置傳感器的數據輸出率和濾波器,以及通過輪詢方式持續讀取
    的頭像 發表于 05-16 16:54 ?1270次閱讀
    <b class='flag-5'>e2studio</b><b class='flag-5'>開發</b><b class='flag-5'>磁力計</b><b class='flag-5'>LIS2MDL</b>(<b class='flag-5'>1</b>)----<b class='flag-5'>輪詢</b><b class='flag-5'>獲取</b><b class='flag-5'>磁力計數據</b>

    使用主控IIC讀取MPU9250的磁力計數據,速度特別慢怎么解決?

    使用iic對mpu9250進行讀取數據,讀取磁力計數據時采用的是主控iic方式,但是讀取的速度特別慢,幾秒一次,網上說磁力計數據輸出的速率最快是100hz,幾秒一次也太慢了;另外在初始化函數中開啟了延時,但是一次讀取6個字節的
    發表于 04-11 07:02

    單片機一個IIC連接兩個MPU9250如何設置讀取磁力計的模式?

    在STM32單片機的一個IIC接口上同時連了兩個MPU9250傳感器,將兩者的AD0分別設為高和低,對于磁力計都設置成Bypass模式,發現兩塊磁力計數據都能讀出來,Bypass模式不是由單片機
    發表于 04-10 07:14

    MotionEC和MotionMC的庫在磁力計校準后為什么不調用MotionMC_SaveCalInNVM函數?

    MotionEC和MotionMC的庫在磁力計校準后為啥不調用MotionMC_SaveCalInNVM這個函數
    發表于 04-02 08:05
    主站蜘蛛池模板: 激情综合网五月激情| 欧美色图日韩| 最新日韩中文字幕| 性做久久久久久| 午夜视频黄| 最刺激黄a大片免费观看下截| www.亚洲一区| 天天射天天草| 天天干天天谢| 殴美一级| 亚洲综合激情| 国产一级特黄一级毛片| 国产视频一二区| 91夜夜人人揉人人捏人人添| 久草热线视频| 国产大乳孕妇喷奶水在线观看| www.四虎.com| 国产精品一区二区三| www.久久综合| 秋霞麻豆| 免费无毒片在线观看| 天天爽夜夜爽视频| 午夜在线观看免费高清在线播放 | 性夜影院爽黄a爽免费视频 | 日韩中文字幕第一页| 国产午夜精品久久久久| 欧美三级成人| jlzzjlzz亚洲日本| 国产高清免费午夜在线视频| 好大好猛好爽好深视频免费| 五月激情六月| 久久e热| 特级淫片aaaa毛片aa视频| 人人干97| 成人a毛片高清视频| 天天射天天爽| 欧美性操| h网站免费| japanese 69hdxxxx日本| 久久久久国产一级毛片高清版| 亚洲国内精品|