正在將MEMS慣性測量單元(IMU)用于個人交通工具平臺的自平衡制導系統,是否會有一款面向消費者,能消除各傳感器之間的全部對齊誤差,并且所有核心傳感器元件都集成在單個芯片上的IMU?
否,對于這個設計來說,這一般不是一個保險的期望。采用魯棒的分立傳感器和最佳封裝并經過優化校準的工業級IMU,其對齊精度要比位于單個芯片上的消費級IMU高得多。
消費級和工業級IMU往往以不同方式規定軸對齊特性。消費級IMU的典型做法是將所有對齊誤差集總為一個跨軸靈敏度規格。面向工業的IMU,比如ADIS16490,則使用兩個不同規格以便更直接地說明對齊精度:軸到軸對齊誤差和軸到封裝對齊誤差。軸到封裝對齊誤差描述各軸相對于IMU封裝內機械特性的對齊程度。軸到軸對齊誤差描述各加速度計和陀螺儀軸的對齊在多大程度上符合理想正交性。正因如此,軸到軸對齊誤差也常被稱為正交誤差。
跨軸靈敏度(CAS)和軸到軸對齊誤差(A2A_MAE)有如下數學關系:
CAS = sin(A2A_MAE) A2A_MAE = asin(CAS)
非正交性發生在傳感器軸之間、傳感器上或源于傳感器與外殼之間的封裝不對齊。對于工業級IMU,這些規格會在工廠校準,并在數據手冊中詳細說明。對于分立器件,跨軸靈敏度規格不包括相對于PCB的裝配偏差。
理想情況下,陀螺儀和加速度計中的多個軸是彼此正交的。然而,這里有個常見的誤解:既然多軸陀螺儀或加速度計可以設計在一個分立MEMS器件之內,那么各軸應是完美正交的,彼此成 90°角。雖然這些器件中的所有慣性傳感器都位于單個芯片上,但加工和制造偏差所引入的固有誤差仍可能造成正交誤差。相應的等效對齊精度與完全校準的工業級IMU相比,實際上并不是非常好。
圖1. 左邊的理想三軸正交情況反映矢量的真實影響。正交誤差使得所有軸上都能檢測到泄漏的部分旋轉或力。
對消費級器件的簡單調查發現,跨軸靈敏度常常在1%到5%范圍內。利用以上關系式,可知等效軸到軸對齊誤差為0.57°到2.87°。
不過也可用毫弧度為單位來定義,相當于0.057°。工業級IMU的精度通常要高得多。我們也可利用此關系將工業級IMU的軸到軸對齊誤差0.018°轉換為等效跨軸靈敏度0.031%。
CAS
= sin(A2A_MAE)
= sin(0.018°)
= 0.00031
= 0.031%
工業級IMU ADIS16489的所有慣性傳感器不是位于一個芯片上,盡管有這個明顯的缺點,但其性能仍要比最佳消費級器件高出大約32倍。
為了解正交誤差的影響,假設一個加速度計軸指向正上方,器件恰好處于水平狀態。加速度計在此z軸上測量重力的總影響。如果其他兩個軸完全正交,那么它們不會測量到任何重力矢量。然而,若有正交誤差,其他兩個水平軸就會測量到重力矢量的一部分。例如,若器件的跨軸靈敏度為1%,其對重力的等效響應將是 10 mg,這相當于0.6°的等效對齊誤差。反之,如果第一個軸不與水平框架正交,它便測不到完整的重力矢量。
正交誤差是加速度計總誤差中特別穩定的成分,因此可通過一次性校準來校正。為了確定一對加速度計軸的正交誤差,須讓加速度計在所有可能的90°方向空間中旋轉,并測量各軸對重力的靜態響應。這可以利用精密萬向節頭或在已知正交表面上進行。
將器件安裝到PCB之后,要通過校準消除所有工作條件下的正交誤差是很困難的。慣性校準要求在器件經歷受控運動模式的同時觀測各傳感器響應。為高效實現此類運動模式,常常需要高度專業化的設備和經驗。與已經預校準的工業級IMU不同,安裝在PCB上的每個消費級MEMS器件都需要針對其他傳感器、環境表現和溫度進行校準。
在分立器件安裝到微型PCB上堅固耐用的模塊中之后,包括三個陀螺儀軸和三個加速度計軸的工業級IMU在制造中利用校準步驟實現高超性能。這種工廠校準不僅能識別和補償MEMS器件本身的正交誤差,還能補償裝配相關的偏斜。因此,與裝配偏差、跨軸誤差和溫度相關的誤差降至最小。ADIS16489工廠校準可將平臺穩定、導航和機器人應用中的軸對齊誤差降至最低。ADIS16489內置一個數字三軸陀螺儀和一個三軸加速度計,陀螺儀軸到軸對齊誤差僅有±0.018°,加速度計軸到軸誤差為±0.035°。除了高性能傳感器參數以外,ADIS16489還利用聚對二甲苯涂層作為內部電路的防潮層。
-
工業級imu
+關注
關注
0文章
1瀏覽量
3208 -
正交誤差
+關注
關注
0文章
1瀏覽量
3613
原文標題:如何消除各傳感器之間的全部對齊誤差?
文章出處:【微信號:analog_devices,微信公眾號:analog_devices】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論