零中頻接收機在幾十年前被提出來,工程中經歷多次的應用實踐,但是多以失敗告終,近年來,隨著通信系統要求成本更低,功耗更低,面積更小,集成度更高,帶寬更大,零中方案能夠很好的解決如上問題而被再次提起。
本文將詳細介紹零中頻接收機的問題以及設計解決方案,結合TI的零中頻方案TRF3711測試結果證明,零中頻方案在寬帶系統的基站中是可以實現的。
1 超外差接收機
為了更好理解零中頻接收的優勢,本節將簡單總結超外差接收機的一些設計困難和缺點。
圖一是簡單超外差接收機的架構,RF信號經過LNA(低噪聲放大器)進入混頻器,和本振信號混頻產生中頻信號輸出,鏡像抑制濾波器濾出混頻的鏡像信號,中頻濾波器濾除帶外干擾信號,起到信道選擇的作用,圖中標示了頻譜的搬移過程及每一部分的功能。
在超外差接收機種最重要的問題是怎樣在鏡像抑制濾波器和信號選擇濾波器的設計上得到平衡,如圖一所示,對濾波器而言,當其品質因子和插損確定,中頻越高,其對鏡像信號的抑制就越好,而對干擾信號的抑制就比較差,相反,如果中頻越低,其對鏡像信號的抑制就變差,而對干擾信號的抑制就非常理想,由于這個原因,超外差接收機對鏡像濾波器和信道濾波器的選擇傳輸函數有非常高的要求,通常會選用聲表濾波器(SAW),或者是采用高階LC濾波器,這些都不利于系統的集成化,同時成本也非常高。
在超外差接收機中,由于鏡像抑制濾波器是外置的,LNA必須驅動50R負載,這樣還會導致面積和放大器噪聲,增益,線性度,功耗的平衡性問題。
鏡像濾波器和選擇濾波器的平衡設計也可采用鏡像抑制架構,如圖二所示的Hartley(1)和 Weaver(2)拓撲架構,在A點和B點的輸出是相同極性的有用信號和極性相反的鏡像信號,這樣通過后面的加法器,鏡像信號就可以被抵消掉,從而達到簡化鏡像濾波器的設計,但是這種架構由于相位和幅度不平衡,其鏡像信號沒有辦法完全抑制,如證明(6),鏡像抑制比IIR.
E指相對的電壓幅度差,指相位差,如果 E和θ足夠小,式(1)可以簡化為(2)。
這里θ是弧度,如果E=5%,θ=5度,IIR約為26dB,如果要達到60dB的IIR,需要θ低于0.1度,這是非常難以實現的,通常這種架構可以做到30-40dB的鏡像抑制(7),所以,即使采用這種架構,鏡像抑制濾波器和信道選擇仍然需要仔細設計。
圖二: Hartley和Weaver鏡像抑制架構
2、零中頻接收機
2.1 零中頻接收機架構及優勢
零中頻接收機架構如圖三,是指RF信號(radio frequency)直接轉化到零頻信號,LPF(低通濾波器)用于近端干擾信號的抑制, 在零中頻架構中,在典型的相位/幅度調制中,正交的I和Q兩路信號是必須的,由于兩個邊帶信號包含了不同有用信息,必須在相位上區分。
相較超外差架構,零中頻架構優勢:1:沒有鏡像抑制要求;2:LNA不需要驅動50R負載;3:采用相同ADC情況下,帶寬是超外差架構的兩倍;4:聲表濾波器和復雜的LC濾波器可以采用簡單的低通濾波器替換,從而利于集成芯片設計,如圖四,TRF3711就是采用零中頻架構,集成了I/Q解調器,低頻的可調增益放大器以及可調信道選擇濾波器,實現了高集成方案。
既然零中頻接收架構如此簡單,為什么到目前為止,還沒有廣泛應用呢?那是因為零中頻接收機極易被各種噪聲污染,從而影響系統性能,下面將討論零中頻接收架構的挑戰。
2.2 零中頻接收機的挑戰及解決方案
零中頻接收機到目前為止,還只用于手持設備上,在基站上還沒有應用,原因是在零中頻架構上,有很多無可避免的噪聲源沒有辦法得到抑制,本文將重點討論閃爍噪聲(1/f),直流偏置(DCoffset);I/Q 不平衡;偶次諧波。
2.2. 1 閃爍噪聲(1/f)
閃爍噪聲是有源器件固有的噪聲,其大小隨頻率降低而增加,主要集中在低頻段,閃爍噪聲對搬移到零中頻的基帶信號產生干擾,降低信噪比,在通常的零中頻接收機中,增益都放在基帶,射頻部分(LNA和解調器)的增益大概在30dB左右,所以下變頻信號大概會在幾十微伏,所以射頻輸入級(LNA,濾波器等等)的噪聲就變得非常重要。
為了更好理解閃爍噪聲,我們可以來分析一個獨立的MOS管,在輸入閃爍噪聲和純熱噪聲情況下的噪聲惡化情況,對一個典型的亞微粒MOS管,計算帶寬為1MHz情況下的閃爍噪聲:(3)
計算從10Hz到200KHz的帶寬內的閃爍噪聲如下
如果只考慮熱噪聲
如果考慮閃爍噪聲的情況下,噪聲增加了Pn1/Pn2=16.9dB, 而在超外差結構中,閃爍噪聲將無關緊要,因為信號主要在中頻進行放大。
減少閃爍噪聲的方法(3):下變頻器后的鏈路工作在低頻,這樣可以選擇雙極性晶體管,從而能夠降低閃爍噪聲;另外采用高通濾波器和類直流校準也能夠抑制低頻的噪聲。
2.2. 2 直流偏置(DC-offset)
由于零中頻接收機轉換帶寬信號到零中頻,大量的偏置電壓會惡化信號,更嚴重的是,直流偏置信號會使混頻后級飽和,如飽和中頻放大器,ADC等。
為了理解直流偏置的起源和影響,我們可以參照圖四的接收通道進行說明。
如圖四(a)所示, 本振口,混頻器口,LNA之間的隔離度不好,Lo(本振信號)可以直接通過LNA和混頻器,我們叫做“本振泄露”, 這種現象是由于芯片內部的電容及基底耦合的,耦合的Lo信號經過LNA到達混頻器,和輸入的Lo信號混頻,叫做“自混頻”,這樣會在 C 點產生直流成分;近似的情況如(b),從 LNA出來的信號耦合到混頻器的本振輸入口,從而產生了直流分量;
為了保證ADC能夠采樣出射頻端口微伏級的電壓,通常需要整個鏈路增益在100dB以上,其中25-30dB的增益來自LNA和混頻器的貢獻。
基于如上分析,對于自混頻產生的直流偏置,我們可以做一個大概的估算,假設混頻器的Lo輸入信號為0.63Vpp(等同于在50ohm系統中的0dBm),通常情況下是-6dBm--+6dBm,假設隔離度為60dB,所以圖五(a),考慮到30dB的射頻增益,混頻器的輸出直流信號大概為10mVpp,在現代通信系統中,在LNA輸入的有用信號可以低至30uVrms, 為了能夠采樣有用信號,需要中頻放大70dB左右,10mV的直流電壓也會放大70dB,會導致混頻器后的基帶放大器器件飽和,產生失真,即使基帶放大器是理想的放大器,也需要一個超高動態范圍的ADC才能解決直流偏置問題,而這種動態范圍的ADC在實際上是不可實現的。
怎樣解決零中頻接收機的直流偏置問題呢?最簡單的方案是采用交流耦合的方式,比如加一個高通濾波器,然而隨機二進制數據的頻譜在DC會呈現出一個峰值,很多仿真證明,為了不惡化信號,高通濾波器的頻率截止點必須低于數據速率的0.1%, 如果是GSM信號,其數據速率為200K,這要要求濾波器的截止頻率為200Hz左右,這樣小的值會導致,1:如果直流偏置變化,其響應會非常慢,2:需要非常大的電容和電阻, 解決的辦法是采用在直流附近最小化信號能量的調制方式,比如UMTS制式的BPSK調制方式。
另外一種常用的方法是通過算法校準的方式消除直流偏置,如圖五所示的架構是TI(德州儀器)的盲校算法,通過計算122.88MHz時鐘周期的直流偏置量,每1.067ms輸入信號實時抵消直流偏置。
直流累加
更新直流偏置
直流偏置更新統計
直流偏置補償
TI的盲校算法可以在全溫范圍內把直流偏置校準到低于+/-5mV以內,圖六是基于TRF3711的實測試結果。
2.2. 3 I/Q不平衡(I/Q imbalance)
對于大多數相頻調制信號,采用零中頻架構要求I/Q兩路信號必須是正交,可以采用射頻偏移90圖七(a)度或者Lo偏移90度度的方式圖七(b),偏移RF信號需要承擔嚴重的噪聲-功率-增益間的平衡,通常采用偏移Lo的方式實現正交解調,對于I/Q兩路信號的相位,幅度不平衡都會導致解調信號的星座圖惡化。
圖七:正交生成在 RF(a),Lo(b)
為了更好理解I/Q不平衡對信號的影響,設定輸入信號為Xin(t)=acosωct+bsinωct, a和b可以任意為+1或者-1,假設I/Q兩路相位是相等的,即:
和θ代表指增益和相位差,輸入信號分別乘以Lo的兩個相位,加上低通濾波器,可以得到如下結果。
圖8(a),(b)分別在星座圖中標示了增益不平衡和相位不平衡的情況,為了更直觀的說明I/Q不平衡的影響,在時域圖進行分析,圖(c)是增益不平衡造成幅度的比例因子不同,而圖(d)是相位不平衡造成了一個通道的部分脈沖數據惡化另一通道的數據,但是相對鏡像信號(實中頻)而言,邊帶信號(復中頻)的影響非常小。
雖然相較鏡像信號的影響,I/Q不平衡的影響沒有非常顯著; 同樣需要對I/Q不平衡信號做處理,除了在硬件上盡量保證I/Q兩路信號的幅度一直和相位平衡外,通常會采用算法進行校準,TI(德州儀器)的盲校算法可以校準到近20dB的改善 (此處不詳細描述具體的算法過程)。
圖九:I/Q 盲校結果
2.2. 4 偶次諧波(even harmonic)
傳統的超外差架構對只是對奇次諧波敏感,而零中頻接收機則對偶次諧波非常敏感,簡單舉例,傳統的高中頻方案,設主信號中頻為100MHz,兩個干擾信號f1=110MHz,f2=120MH 在,三次諧波2f1-f2=100MHz, 2f2-f1=130MHz,他們離主信號都很近,而偶次諧波f1-f2,f1+f2等都離主信號很遠,從而能夠非常容易濾除,所以對零中頻架構而言,偶次諧波影響就非常嚴重,通常以IIP2來定義偶此諧波,相比奇次諧波,偶次諧波的功率更大,而且不像奇次諧波,可以通過頻率規劃來規避它,而偶次諧波可以產生于任何高功率的調制干擾信號,沒有辦法通過頻率規劃來避免。如圖十示。
怎樣抑制偶次諧波呢?簡單的方法就是采用差分LNA和混頻器,但有兩個問題需要注意,首先,天線和雙工器都是單端的,所以需要單端到差分的轉換,比如加變壓器,由于通常其會有幾個dB損耗,會引入幾個dB的系統噪聲,其次,差分的LNA需要更高的功耗。
2.3 TI 零中頻方案實現
TI發布的零中頻接收機TRF3711,集成了寬帶的解調器,中頻PGA,可調帶寬濾波器,自適應的直流校準模塊,以及ADC驅動放大器,配合TI的盲校算法,外接LNA模塊,就可以實現在基站上的應用 (除了MC-GSM外的應用)。
圖十二,十三,是基于20MHz OFDM信號的實測結果,顯示TRF3711完全能夠滿足寬帶信號的基站應用。
3、總結
零中頻接收機天然具有易集成,低功耗,低成本等特點,但是由于其自身的技術特點,零中頻接收機還沒有在基站系統中廣泛的應用,本方案詳細分析了零中頻接收機的技術難點,以及相應的解決辦法,結合TI零中頻接收機方案TRF3711的測試結果,證明了零中頻接收機在寬帶系統中依然是可是實現的。
-
超外差接收機
+關注
關注
2文章
13瀏覽量
16112 -
相位差
+關注
關注
1文章
31瀏覽量
15042 -
零中頻
+關注
關注
0文章
64瀏覽量
9122
發布評論請先 登錄
相關推薦
評論