在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

一文理解多模態(tài)大語言模型——下

jf_23871869 ? 來源:Sebastian Raschka 博士 ? 作者:Sebastian Raschka 博士 ? 2024-12-03 15:18 ? 次閱讀

?

作者:Sebastian Raschka 博士,

翻譯:張晶,Linux Fundation APAC Open Source Evangelist

編者按:本文并不是逐字逐句翻譯,而是以更有利于中文讀者理解的目標,做了刪減、重構和意譯,并替換了多張不適合中文讀者的示意圖。

原文地址:https://magazine.sebastianraschka.com/p/understanding-multimodal-llms

《一文理解多模態(tài)大語言模型 - 上》介紹了什么是多模態(tài)大語言模型,以及構建多模態(tài) LLM 有兩種主要方式之一:統(tǒng)一嵌入解碼器架構(Unified Embedding Decoder Architecture)。本文將接著介紹第二種構建多模態(tài) LLM 的方式:跨模態(tài)注意架構(Cross-modality Attention Architecture approach)。

一,跨模態(tài)注意架構

《一文理解多模態(tài)大語言模型 - 上》討論了通過統(tǒng)一嵌入解碼器架構來構建多模態(tài)大語言模型(LLM)的方法,并且理解了圖像編碼背后的基本概念,下面介紹另一種通過交叉注意力機制實現(xiàn)多模態(tài)LLM的方式,如下圖所示:

wKgZO2dOtyiACm8SAAQZToNs9ng951.png

在上圖所示的跨模態(tài)注意力架構方法中,我們?nèi)匀皇褂弥敖榻B的圖像向量化方式。然而,與直接將圖像向量作為LLM的輸入不同,我們通過交叉注意力機制在多頭注意力層中連接輸入的圖像向量。

這個想法與2017年《Attention Is All You Need》論文中提出的原始Transformer架構相似,在原始《Attention Is All You Need》論文中的Transformer最初是為語言翻譯開發(fā)的。因此,它由一個文本編碼器(下圖的左部分)組成,該編碼器接收要翻譯的句子,并通過一個文本解碼器(圖的右部分)生成翻譯結果。在多模態(tài)大語言模型的背景下,圖的右部分的編碼器由之前的文本編碼器,更換為圖像編碼器(圖像編碼后的向量)。

文本和圖像在進入大語言模型前都編碼為嵌入維度和尺寸(embedding dimensions and size)一致的向量。

“我們可以把多模態(tài)大語言模型看成“翻譯”文本和圖像,或文本和其它模態(tài)數(shù)據(jù) --- 譯者。”

wKgZPGdOtymAWrlVAAZyVdmo3go015.png

二,統(tǒng)一解碼器和交叉注意力模型訓練

與傳統(tǒng)僅文本的大語言模型(LLM)的開發(fā)類似,多模態(tài)大語言模型的訓練也包含兩個階段:預訓練和指令微調。然而,與從零開始不同,多模態(tài)大語言模型的訓練通常以一個預訓練過且已經(jīng)過指令微調的大語言模型作為基礎模型。

對于圖像編碼器,通常使用CLIP,并且在整個訓練過程中往往保持不變,盡管也存在例外,我們稍后會探討這一點。在預訓練階段,保持大語言模型部分凍結也是常見的做法,只專注于訓練投影器(Projector)——一個線性層或小型多層感知器。鑒于投影器的學習能力有限,通常只包含一兩層,因此在多模態(tài)指令微調(第二階段)期間,大語言模型通常會被解凍,以允許進行更全面的更新。然而,需要注意的是,在基于交叉注意力機制的模型(方法B)中,交叉注意力層在整個訓練過程中都是解凍的。

在介紹了兩種主要方法(方法A:統(tǒng)一嵌入解碼器架構和方法B:跨模態(tài)注意力架構)之后,你可能會好奇哪種方法更有效。答案取決于具體的權衡:

統(tǒng)一嵌入解碼器架構(方法A)通常更容易實現(xiàn),因為它不需要對LLM架構本身進行任何修改。

跨模態(tài)注意力架構(方法B)通常被認為在計算上更高效,因為它不會通過額外的圖像分詞(Token)來過載輸入上下文,而是在后續(xù)的交叉注意力層中引入這些標記。此外,如果在訓練過程中保持大語言模型參數(shù)凍結,這種方法還能保持原始大語言模型的僅文本性能。

下圖總結了常見多模態(tài)大語言模型使用的組件和技術:

wKgZO2dOtymATdmPAANHQf7jd4Y003.png

三,總結

“多模態(tài)LLM可以通過多種不同的方式成功構建,核心思路在于把多模態(tài)數(shù)據(jù)編碼為嵌入維度和尺寸一致的向量,使得原始大語言模型可以對多模態(tài)數(shù)據(jù)“理解并翻譯”。--- 譯者”。

如果你有更好的文章,歡迎投稿!

稿件接收郵箱:nami.liu@pasuntech.com

更多精彩內(nèi)容請關注“算力魔方?”!

?審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 語言模型
    +關注

    關注

    0

    文章

    524

    瀏覽量

    10277
  • LLM
    LLM
    +關注

    關注

    0

    文章

    288

    瀏覽量

    334
收藏 人收藏

    評論

    相關推薦

    文理解模態(tài)語言模型——上

    /understanding-multimodal-llms 在過去幾個月中, OpenVINO? 架構師 Yury閱讀了眾多有關模態(tài)語言模型的論文和博客,在此基礎上,推薦了
    的頭像 發(fā)表于 12-02 18:29 ?326次閱讀
    <b class='flag-5'>一</b><b class='flag-5'>文理解</b><b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>——上

    如何利用LLM做模態(tài)任務?

    大型語言模型LLM(Large Language Model)具有很強的通用知識理解以及較強的邏輯推理能力,但其只能處理文本數(shù)據(jù)。雖然已經(jīng)發(fā)布的GPT4具備圖片理解能力,但目前還未開放
    的頭像 發(fā)表于 05-11 17:09 ?913次閱讀
    如何利用LLM做<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>任務?

    邱錫鵬團隊提出具有內(nèi)生跨模態(tài)能力的SpeechGPT,為模態(tài)LLM指明方向

    大型語言模型(LLM)在各種自然語言處理任務上表現(xiàn)出驚人的能力。與此同時,模態(tài)大型語言
    的頭像 發(fā)表于 05-22 14:38 ?691次閱讀
    邱錫鵬團隊提出具有內(nèi)生跨<b class='flag-5'>模態(tài)</b>能力的SpeechGPT,為<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>LLM指明方向

    VisCPM:邁向多語言模態(tài)模型時代

    隨著 GPT-4 和 Stable Diffusion 等模型模態(tài)能力的突飛猛進,模態(tài)模型
    的頭像 發(fā)表于 07-10 10:05 ?718次閱讀
    VisCPM:邁向多<b class='flag-5'>語言</b><b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>大<b class='flag-5'>模型</b>時代

    更強更通用:智源「悟道3.0」Emu模態(tài)模型開源,在模態(tài)序列中「補全切」

    當前學界和工業(yè)界都對模態(tài)模型研究熱情高漲。去年,谷歌的 Deepmind 發(fā)布了模態(tài)視覺語言
    的頭像 發(fā)表于 07-16 20:45 ?724次閱讀
    更強更通用:智源「悟道3.0」Emu<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>大<b class='flag-5'>模型</b>開源,在<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>序列中「補全<b class='flag-5'>一</b>切」

    中科大&amp;字節(jié)提出UniDoc:統(tǒng)的面向文字場景的模態(tài)模型

    如上圖所示,UniDoc基于預訓練的視覺大模型及大語言模型,將文字的檢測、識別、spotting(圖中未畫出)、模態(tài)
    的頭像 發(fā)表于 08-31 15:29 ?1564次閱讀
    中科大&amp;字節(jié)提出UniDoc:統(tǒng)<b class='flag-5'>一</b>的面向文字場景的<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>大<b class='flag-5'>模型</b>

    DreamLLM:多功能模態(tài)大型語言模型,你的DreamLLM~

    由于固有的模態(tài)缺口,如CLIP語義主要關注模態(tài)共享信息,往往忽略了可以增強多模態(tài)理解模態(tài)特定知識。因此,這些研究并沒有充分認識到
    的頭像 發(fā)表于 09-25 17:26 ?763次閱讀
    DreamLLM:多功能<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>大型<b class='flag-5'>語言</b><b class='flag-5'>模型</b>,你的DreamLLM~

    探究編輯模態(tài)語言模型的可行性

    不同于單模態(tài)模型編輯,模態(tài)模型編輯需要考慮更多的模態(tài)信息。文章出發(fā)點依然從單
    發(fā)表于 11-09 14:53 ?512次閱讀
    探究編輯<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>的可行性

    自動駕駛和模態(tài)語言模型的發(fā)展歷程

    模態(tài)語言模型(MLLM) 最近引起了廣泛的關注,其將 LLM 的推理能力與圖像、視頻和音頻數(shù)據(jù)相結合,通過多模態(tài)對齊使它們能夠更高效地執(zhí)
    發(fā)表于 12-28 11:45 ?526次閱讀
    自動駕駛和<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>的發(fā)展歷程

    機器人基于開源的模態(tài)語言視覺大模型

    ByteDance Research 基于開源的模態(tài)語言視覺大模型 OpenFlamingo 開發(fā)了開源、易用的 RoboFlamingo 機器人操作
    發(fā)表于 01-19 11:43 ?420次閱讀
    機器人基于開源的<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b><b class='flag-5'>語言</b>視覺大<b class='flag-5'>模型</b>

    韓國Kakao宣布開發(fā)模態(tài)語言模型“蜜蜂”

    韓國互聯(lián)網(wǎng)巨頭Kakao最近宣布開發(fā)了種名為“蜜蜂”(Honeybee)的模態(tài)大型語言模型。這種創(chuàng)新
    的頭像 發(fā)表于 01-19 16:11 ?696次閱讀

    李未可科技正式推出WAKE-AI模態(tài)AI大模型

    文本生成、語言理解、圖像識別及視頻生成等模態(tài)交互能力。 ? 該大模型圍繞 GPS 軌跡+視覺+語音打造新
    發(fā)表于 04-18 17:01 ?600次閱讀
    李未可科技正式推出WAKE-AI<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>AI大<b class='flag-5'>模型</b>

    語言模型(LLM)快速理解

    自2022年,ChatGPT發(fā)布之后,大語言模型(LargeLanguageModel),簡稱LLM掀起了波狂潮。作為學習理解LLM的開始,先來整體
    的頭像 發(fā)表于 06-04 08:27 ?982次閱讀
    大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>(LLM)快速<b class='flag-5'>理解</b>

    利用OpenVINO部署Qwen2模態(tài)模型

    模態(tài)模型的核心思想是將不同媒體數(shù)據(jù)(如文本、圖像、音頻和視頻等)進行融合,通過學習不同模態(tài)之間的關聯(lián),實現(xiàn)更加智能化的信息處理。簡單來說,
    的頭像 發(fā)表于 10-18 09:39 ?440次閱讀

    商湯日日新模態(tài)模型權威評測第

    剛剛,商湯科技日日新SenseNova模態(tài)模型,在權威綜合評測權威平臺OpenCompass的模態(tài)評測中取得榜單第
    的頭像 發(fā)表于 12-20 10:39 ?183次閱讀
    主站蜘蛛池模板: 激情丁香网| 国产一区在线mmai| 欧美1819| 亚洲第一区视频| 狠狠色噜噜狠狠狠狠97影音先锋| 色噜噜狠狠狠狠色综合久一| 都市禁忌猎艳风流美妇| 香港三级理论在线观看网站| 四虎成人影院网址| 免费人成网555www| fc2 ppv sss级素人美女| 日日射天天射| susu成人影院| 亚洲小视频在线播放| 欧洲性freefree大白屁股| 国产精品九九久久一区hh| 午夜在线观看免费观看大全| 国产小视频在线观看免费| 视频在线二区| 能看的黄色网址| 一级在线观看视频| 国产精品波多野结衣| aa视频在线观看| 在线毛片网站| 免费黄色国产视频| 狠狠干夜夜骑| 久久国产热| 欧美日韩国产一区二区三区不卡| www.jizz中国| 亚洲不卡免费视频| 毛片啪啪| 人人人插| 免费在线不卡视频| 欧美一级片在线免费观看| 日日干夜夜草| 亚洲人成电影院在线观看| 激情五月五月婷婷| 人人澡 人人澡 人人看| 亚洲精品在线免费观看视频| 国产亚洲精品自在久久77| 美女牲交视频一级毛片|