研究背景
隨著5G智能電子設(shè)備和高能量密度鋰離子電池的快速發(fā)展,商用LiCoO?因其高工作電壓、高體積能量密度和優(yōu)異的循環(huán)壽命而備受青睞。然而,LiCoO?的能量密度受到其工作截止電壓(4.5 V)的限制,難以滿足人們對電池高能量密度的需求。在超過4.5 V的高電壓下,LiCoO?的晶體結(jié)構(gòu)會發(fā)生不可逆相變,導(dǎo)致晶胞體積劇烈變化,并伴隨裂紋形成及循環(huán)穩(wěn)定性下降。傳統(tǒng)的元素?fù)诫s或表面涂層策略雖能一定程度緩解高電壓下的退化問題,但仍難以有效解決非均勻鋰化/脫鋰引起的內(nèi)應(yīng)力集中問題。
成果簡介
基于上述問題,南京大學(xué)周豪慎教授、郭少華教授、美國阿貢國家實(shí)驗(yàn)室劉同超研究員等人合作提出了基于熔鹽合成技術(shù)的“多邊形棱柱狀LiCoO?形貌設(shè)計(jì)”策略,通過對顆粒形貌和結(jié)構(gòu)的精確控制,實(shí)現(xiàn)了鋰離子分布的均勻化、相變抑制和內(nèi)部應(yīng)力的顯著降低。該研究以“Precise Synthesis of 4.75 V-Tolerant LiCoO? with Homogeneous Delithiation and Reduced Internal Strain”為題,發(fā)表在《Journal of the American Chemical Society》期刊上。
研究亮點(diǎn)
1. 首次設(shè)計(jì)并制備出多邊形棱柱狀的LiCoO?,通過對鋰離子擴(kuò)散通道的均勻控制,實(shí)現(xiàn)鋰離子分布的均勻化。
2. 高電壓下(4.75 V),抑制了從H1-3到O1的相變,并降低了晶胞體積變化幅度,顯著減小了內(nèi)部應(yīng)力的積累。
3. 提升了循環(huán)壽命和容量保持率,在4.75 V的高電壓下,循環(huán)200次后容量保持率達(dá)82%,展現(xiàn)出顯著的結(jié)構(gòu)穩(wěn)定性和電化學(xué)性能。
圖文導(dǎo)讀
圖1 多邊形棱柱狀LiCoO? (P-LCO) 的結(jié)構(gòu)特征與形貌
圖1通過多種表征手段展示了P-LCO的晶體結(jié)構(gòu)與形貌特性。圖1a通過Rietveld精修的X射線衍射(XRD)圖譜確認(rèn)了P-LCO具有典型的六方R3?m層狀結(jié)構(gòu),并且無雜相存在。
相比傳統(tǒng)LiCoO? (LCO),P-LCO在(003)/(104)峰強(qiáng)度比值上表現(xiàn)出更明顯的擇優(yōu)取向,表明其具有更加規(guī)則的晶面排布。圖1b通過掃描電子顯微鏡(SEM)圖像顯示了P-LCO顆粒的獨(dú)特多邊形棱柱形態(tài),其晶體排列沿c軸方向高度對稱,側(cè)壁厚度為1-3 μm,展現(xiàn)出平坦的幾何形狀,與傳統(tǒng)的隨機(jī)形貌LCO形成鮮明對比。
圖1c通過高角環(huán)形暗場掃描透射電子顯微鏡(HAADF-STEM)揭示了P-LCO顆粒在原子級別上的結(jié)構(gòu)特征。結(jié)果顯示,P-LCO顆粒的表面被一層均勻且厚度約為2 nm的鋁氧化物(Al?O?)涂層包覆,從而起到抑制電解液腐蝕的保護(hù)作用。
此外,通過能量色散光譜(EDS)元素分布圖進(jìn)一步證實(shí),Al、Co和O元素在顆粒內(nèi)部均勻分布,表明鋁摻雜不僅改變了表面涂層性質(zhì),還進(jìn)一步優(yōu)化了內(nèi)部晶體結(jié)構(gòu)。這種規(guī)則形貌和均勻分布的涂層結(jié)構(gòu)有助于減少應(yīng)力積累并提高顆粒的機(jī)械穩(wěn)定性,為高電壓下的循環(huán)性能提升奠定了基礎(chǔ)。
圖 2 P-LCO和傳統(tǒng)LCO在4.75 V下的結(jié)構(gòu)演變與鋰離子分布的均勻性
通過原位XRD技術(shù),圖2a和圖2d分別比較了P-LCO和傳統(tǒng)LCO在首次充放電過程中晶胞參數(shù)(如c軸晶格常數(shù))的變化。研究發(fā)現(xiàn),在低于4.6 V的范圍內(nèi),兩種材料的晶體結(jié)構(gòu)演變路徑相似,包括從H1到H2再到H3的相變。
然而,當(dāng)電壓高于4.65 V時(shí),傳統(tǒng)LCO經(jīng)歷了顯著的H1-3到O1的相變,而P-LCO則成功抑制了這一不利的相變(如圖2b所示)。對于該相變的抑制表現(xiàn)在P-LCO更小的晶胞體積變化幅度((003)峰的最大位移為1.76°,顯著低于LCO的2.51°),從而顯著降低了晶體內(nèi)部的應(yīng)力積累。此外,圖2c和圖2f展示了基于全場透射X射線顯微術(shù)(TXM)和X射線近邊吸收結(jié)構(gòu)(XANES)分析的單顆粒鋰離子分布圖。
結(jié)果顯示,P-LCO顆粒內(nèi)部的鈷氧化態(tài)分布更加均勻,表明鋰離子分布的濃度梯度較低,而傳統(tǒng)LCO則表現(xiàn)出明顯的鋰離子分布不均勻性,導(dǎo)致局部應(yīng)力集中。這些結(jié)果表明,P-LCO獨(dú)特的形貌設(shè)計(jì)和涂層結(jié)構(gòu)能夠有效緩解應(yīng)力集中,提高結(jié)構(gòu)穩(wěn)定性,從而支持其在高電壓下的優(yōu)異性能表現(xiàn)。
圖3 電化學(xué)循環(huán)至4.75 V后正極的形貌和結(jié)構(gòu)變化
圖3通過電鏡和晶體學(xué)表征揭示了P-LCO和LCO在4.75 V高電壓下循環(huán)后的內(nèi)部結(jié)構(gòu)演變差異。圖3a展示了經(jīng)過50次循環(huán)后的P-LCO顆粒截面圖。可以看到,其顆粒表面仍然保持平整光滑,無明顯裂紋或結(jié)構(gòu)滑移。而圖3b中傳統(tǒng)LCO顆粒則出現(xiàn)了大量內(nèi)部裂紋,這些裂紋為電解液滲透提供了通道,導(dǎo)致進(jìn)一步的副反應(yīng)和顆粒破壞。
此外,通過晶格參數(shù)變化的比較(如圖3c所示),發(fā)現(xiàn)P-LCO的晶格常數(shù)(a軸、c軸)在循環(huán)后變化幅度明顯小于傳統(tǒng)LCO,表明P-LCO更能保持晶體結(jié)構(gòu)的完整性。為了進(jìn)一步分析顆粒內(nèi)部的變化,研究團(tuán)隊(duì)使用電子能量損失譜(EELS)進(jìn)行了掃描。結(jié)果顯示,LCO內(nèi)部發(fā)生了明顯的氧損失和Co?O?尖晶石相的生成,而P-LCO則保持了完整的R3?m層狀結(jié)構(gòu)。
這些表征結(jié)果表明,P-LCO優(yōu)異的結(jié)構(gòu)穩(wěn)定性來源于其均勻的鋰離子提取行為和降低的應(yīng)力積累,進(jìn)一步提升了其高電壓下的循環(huán)壽命。
圖4 循環(huán)后正極顆粒中的相變、晶格失配和內(nèi)部應(yīng)力分布
圖4a-d展示了循環(huán)后P-LCO顆粒的內(nèi)部應(yīng)力分布及結(jié)構(gòu)完整性。在高角環(huán)形暗場掃描透射電子顯微鏡(HAADF-STEM)圖像中,可以看到P-LCO顆粒表面和內(nèi)部保持了良好的層狀結(jié)構(gòu),無顯著的晶格錯(cuò)配或相變。
同時(shí),通過幾何相位分析(GPA),圖4d中的應(yīng)力分布圖顯示,P-LCO的內(nèi)部應(yīng)力變化幅度較小且分布均勻,從而有效防止了晶體裂紋的形成。相比之下,圖4e-h中傳統(tǒng)LCO顆粒的表征結(jié)果顯示,其表面和內(nèi)部發(fā)生了大面積的晶格錯(cuò)配,伴隨嚴(yán)重的應(yīng)力集中和裂紋生成。
此外,深度學(xué)習(xí)算法(AtomSegNet)生成的超分辨率圖像進(jìn)一步揭示了LCO顆粒內(nèi)部的O1堆垛相變和大量位錯(cuò)的存在。這些表征結(jié)果再次驗(yàn)證了P-LCO在形貌設(shè)計(jì)上的優(yōu)勢,通過均勻的鋰離子分布和降低的應(yīng)力積累,有效抑制了高電壓下的結(jié)構(gòu)退化。
圖5 在電壓范圍為3.0-4.75 V的半電池中的電化學(xué)性能
圖5a-c比較了P-LCO和傳統(tǒng)LCO在4.75 V電壓下的電化學(xué)性能。初始充放電曲線顯示,P-LCO在0.2C倍率下展現(xiàn)出226.4 mAh/g的可逆容量,以及918.04 Wh/kg的高能量密度,并且在循環(huán)200次后仍能保持82%的容量。相比之下,傳統(tǒng)LCO容量快速衰減,僅在約90次循環(huán)后失效。
此外,圖5d-e總結(jié)了P-LCO和LCO在高電壓下的退化機(jī)制差異。對于P-LCO,均勻的鋰離子提取行為有效抑制了從H1-3到O1的相變,同時(shí)減少了內(nèi)部應(yīng)力的積累,從而確保了顆粒結(jié)構(gòu)的完整性。相反,傳統(tǒng)LCO由于鋰離子提取的不均勻性,導(dǎo)致應(yīng)力集中、裂紋形成以及結(jié)構(gòu)崩塌,最終失去電化學(xué)活性。
這些結(jié)果表明,通過合理的形貌設(shè)計(jì),P-LCO不僅能夠在高電壓下提供優(yōu)異的循環(huán)性能,還為高能量密度鋰離子電池材料的開發(fā)提供了新思路。
總結(jié)展望
本研究提出的多邊形棱柱狀LiCoO?形貌設(shè)計(jì),通過精確控制顆粒形態(tài)和內(nèi)部晶體結(jié)構(gòu)分布,實(shí)現(xiàn)了鋰離子分布的均勻化,且在抑制相變的同時(shí)顯著降低應(yīng)力,改善了高電壓下的循環(huán)穩(wěn)定性和電化學(xué)性能。這項(xiàng)研究不僅為解決LiCoO?高電壓失效機(jī)制提供了新思路,還拓展了通過形貌優(yōu)化提升電極性能的可能性。
文獻(xiàn)信息
Precise Synthesis of 4.75 V-Tolerant LiCoO? with Homogeneous Delithiation and Reduced Internal Strain. Journal of the American Chemical Society, https://doi.org/10.1021/jacs.4c10976.
-
鋰離子電池
+關(guān)注
關(guān)注
85文章
3248瀏覽量
77829 -
光譜
+關(guān)注
關(guān)注
4文章
836瀏覽量
35250
原文標(biāo)題:突破電壓極限!南京大學(xué)「長江學(xué)者」周豪慎,最新JACS!
文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論