麻省理工學院(MIT)的研究人員利用機器學習算法中的深度神經網絡,創造出了第一個可以在識別音樂類型等聽覺任務上模擬人類表現的模型。
該模型由許多信息處理單元組成,通過輸入大量的數據來訓練此模型,以完成特定的任務。研究人員利用該模型來闡明人腦是如何執行同樣的任務的。
Josh McDermott說:“這些模型第一次給我們提供一個能夠執行對人類有意義的感官任務的機器系統,并且是在人類的水平等級上進行這項工作。”他是麻省理工學院大腦和認知科學系的神經科學Frederick A.和Carole J. Middleton的助理教授,也是這項研究的資深作者。 “從歷史上看,這種感官的處理方式很難理解,部分原因是我們沒有一個非常明確的理論基礎,也沒有一個很好的方法來對可能正在發生的事情進行開發建模。”
這項研究發表在4月19日的《Neuron》雜志上,這項研究也證明了人類的聽覺皮層排列在在一個等級分明的組織中,就像視覺皮質一樣。在這種類型的排列中,感官信息經過連續的處理,基本信息處理得更早,而像單詞含義一樣的更高級特征在后期處理。
麻省理工學院研究生Alexander Kell和斯坦福大學助理教授Daniel Yamins是論文的主要作者。其他作者是麻省理工學院前訪問學生Erica Shook和前麻省理工學院博士后Sam Norman Haignere。
大腦建模:模型學會了像人類一樣準確地執行任務
當神經網絡在20世紀80年代首次出現時,神經科學家們希望這種系統可以用來模擬人腦。然而,來自那個時代的計算機不夠強大,無法建立足夠大的模型來進行一些實際任務,如物體識別或語音識別等。
在過去的五年里,隨著計算能力和神經網絡技術的進步,使用神經網絡來執行這些困難的現實任務已經成為一種可能,而且它們已經成為許多工程應用程序中的標準方法。與此同時,一些神經科學家對這些系統是否能夠來模擬人腦進行了重新審視。
Kell說:“這對于神經科學來說是一個激動人心的機會,因為我們可以創造出可以代替人類來執行某些工作的系統,然后我們可以對這些模型進行測試并將它們與大腦進行比較。”
麻省理工學院的研究人員訓練他們的神經網絡來執行兩個聽覺任務,一個涉及語音,另一個涉及音樂。在語音任務中,研究人員給模型提供了成千上萬的兩秒鐘長的錄音。任務是識別音頻中單詞。在音樂任務中,該模型被要求識別那些兩秒鐘音樂片段的類型。每個片段還包括背景噪音,使任務更加現實也更加困難。
在完成了成千上萬的數據訓練之后,模型學會了像人類一樣準確地執行任務。
Kell說:“這個想法是隨著時間的推移,模型在任務中變得越來越好。希望它正在學習一些一般的東西,所以如果你給模型輸入一種它以前從未聽過的新聲音,它會做得很好,這已經在實驗中得到了證明。”
該模型還傾向于在人類最容易犯錯誤的片段上犯錯誤。
組成神經網絡的處理單元可以以多種方式組合在一起,形成可以影響模型的性能的不同模型結構。
麻省理工研究團隊發現,這兩項任務的最佳模型是將處理分為兩組階段。第一階段是在任務之間共享的,但在此之后,它分成兩個分支,用于進一步的分析:一個用于語音處理任務,另一個用于音樂處理任務。
分級的證據:初級聽覺皮層和其他有區別
然后,研究人員用他們的模型對一個長期存在的關于聽覺皮層結構的問題進行了探索:它是否分級。
在分級系統中,一系列的大腦區域在流經系統的感官信息上執行不同類型的計算。有證據表明,視覺皮層有相同類型的組織結構。前期的區域,被稱為初級視覺皮質,對簡單的特征如顏色或方向做出反應。后端的區域則執行更復雜的任務,如對象識別。
然而,很難測試這種類型的組織是否也存在于聽覺皮層中,部分原因是沒有一個好的模型來對人類的聽覺行為進行復制。
McDermott說:“我們認為,如果我們可以構建一個和人類執行同樣任務的模型,我們就能夠比較將模型不同階段的不同部分與大腦進行比價,這樣可以得到一些證據來證明大腦中的一些部分是否是分級的組織。”
研究人員發現,在他們的模型中聲音的基本特征,如頻率在早期階段更容易被提取。當信息在神經網上不斷向后傳輸的過程中,一些基本特征越來越難提取,而更高層次的信息,例如詞的含義變得更容易提取。
為了驗證模型階段是否可以復制人類聽覺皮層處理聲音信息的方式,研究人員使用了功能性磁共振成像(fMRI)來測量大腦處理真實聲音時聽覺皮層的不同區域。然后,他們比較了在處理相同的聲音時,大腦和模型的區別。
他們發現,模型的中間階段與大腦初級聽覺皮層的活動相似性最高,隨后的網絡與初級皮質以外的活動相呼應。研究人員說,這為聽覺皮層以一種類似于視覺皮層的分級方式排列提供了證據。
McDermott說:“我們非常清楚地看到,初級聽覺皮層和其他所有東西之間的區別。”
作者現在打算開發一種可以執行其他類型的聽覺任務的模型,例如特定聲音的發聲位置定位,來探討這些任務是否可以通過本文中發現的思路來完成,或者說其他的一些任務通過對人腦進行研究,以獲得新的思路。
-
神經網絡
+關注
關注
42文章
4772瀏覽量
100807 -
語音識別
+關注
關注
38文章
1741瀏覽量
112677 -
機器學習
+關注
關注
66文章
8420瀏覽量
132685
原文標題:MIT開發聽覺神經網絡模型,學會從2秒片段識別音樂類型
文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論