科學論文的寫作少不了用圖表對重要數據進行展示,以圖表形式展示材料屬性之間的關系,既能突出重要關系,又能增強對材料行為的理解,也方便對材料作出選擇。不過,許多情況下,這些相關性本質上是高度多維的,通常只能使用二維圖表分析來建立不同屬性之間的關系,可能僅表達了這些關系的某些方面。要使材料的高維數據可視化、可作有意義的比較分析困難不小。來自美國Lehigh大學的Jeffrey Rickman,采用可視化策略(即平行坐標)的數據分析方法,更好地展示了多維材料數據,可以更好地識別不同屬性之間的有用關系。他以這種方法,構建了金屬系和陶瓷系多維材料屬性圖表,并作了系統分析,簡化了高維幾何圖形的描述,實現了尺寸縮小和重要屬性之間關系的識別,強化了不同材料類別之間的區別,為識別材料各屬性之間的關系提供了強有力的工具。
It is often advantageous to display material properties relationships in the form of charts that highlight important correlations and thereby enhance our understanding of materials behavior and facilitate materials selection. Unfortunately, in many cases, these correlations are highly multidimensional in nature, and one typically employs low-dimensional cross-sections of the property space to convey some aspects of these relationships. To overcome some of these difficulties, in this work we employ methods of data analytics in conjunction with a visualization strategy, known as parallel coordinates, to represent better multidimensional materials data and to extract useful relationships among properties. We illustrate the utility of this approach by the construction and systematic analysis of multidimensional materials properties charts for metallic and ceramic systems. These charts simplify the description of high-dimensional geometry, enable dimensional reduction and the identification of significant property correlations and underline distinctions among different materials classes.
-
可視化
+關注
關注
1文章
1194瀏覽量
20942 -
數據分析
+關注
關注
2文章
1449瀏覽量
34059
原文標題:npj:數據分析——多維屬性的可視化圖表
文章出處:【微信號:zhishexueshuquan,微信公眾號:知社學術圈】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論