在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

揭秘人工智能神經網絡為何無法實現人類的推理或產生意識

bzSh_drc_iite ? 來源:未知 ? 作者:steve ? 2018-05-14 15:17 ? 次閱讀

盡管神經網絡還無法實現基本的人類推理和理解力,但它們將是建構人工智能漫漫長路上所用到的重要工具之一。

前不久,據華爾街日報報道, Uber在一宗無人車的測試過程中,造成了一名行人死亡的嚴重交通事故,除此之外,環顧我們身邊,蘋果手機的虛擬個人助理Siri有時會無法識別我們在說什么;某些人臉識別支付應用也存在著一些安全問題。這些事件反映出來的一個情況是,目前的AI似乎并沒有足夠的智能,甚至并無法很好地處理從外界獲取的信息

人腦中的神經網絡是一個非常復雜的組織,成人的大腦中約有1000億個神經元,人類至今仍在探索人腦的工作原理。而人們通過對生物神經元的研究和理解,構建了一個模擬人腦的計算模型:人工神經網絡!

那么,人工神經網絡是什么?人類通過構造神經網絡,能否給AI賦能,使之自我進化?

什么是神經網絡?

簡單來說,神經網絡是一種模擬人腦的計算架構;利用神經網絡進行機器學習,則讓計算機不再只是執行命令的機器,而是具有了一定程度上分析判斷的能力。當然,這個能力也離不開海量的數據和高超的計算能力。

一個經典的神經網絡一般包含三個層次:輸入層、隱藏層和輸出層。而這三個層分別模仿的是神經元的樹突、軸突和軸突末梢。輸入層接收外部的輸入數據,比如圖片、文本、語音等,通過,隱層抽象數據的通用模式,進而通過輸出層輸出模型的計算的結果。

揭秘人工智能神經網絡為何無法實現人類的推理或產生意識

歷史上,科學家還設計過多層的神經網絡,每一層都會對前一層傳來的結果進行再次加工,目的是模擬出一種“深思熟慮”的感覺,但最后發現結果準確度并沒有提高,有的時候還會陷入誤區,就像人容易朝著一個思路越陷越深,最后鉆牛角尖了一樣。隨著技術進步,讓這一問題得到改善。現在,最厲害的神經網絡技術不但已經非常接近人腦,還排除了很多人腦自身存在的低效的思維方式。

柯潔在與AlphaGo大戰后,在接受騰訊體育記者的采訪時表示,“我也不敢想象,它居然可以把棋下得那么強硬,撐得那么滿,好像好多塊棋扭在一起,那是人類擅長發揮的地方了。跟它下棋會發現它處理得好像比我們人類還好很多,其實那一刻是很絕望的。甚至是那些研發它的人也不知道是怎么做到這一點的,研發它的人是下不過它的,很多人甚至不懂棋,居然能創造出這么一個怪物。所以,我唯一能感受到的是它對形勢的樂觀和自信,而且是絕對的樂觀和自信,這一點人類是沒有的。再自信也不會像它那么自信,無論你驗證多少次,它都是不可戰勝的。”

神經網絡為何無法實現人類的推理

并產生意識?

機器人是否具有意識”一直是人們所爭論的焦點之一,而在這其中,人工神經網絡的技術發展起著重要的作用。對當前的人工神經網絡而言,解決某些特定場景的問題,特別具有優勢,但解決人們習以為常的問題卻非常困難。比如,MIT媒體實驗室研究員joy buolamwini研究文章稱,人臉識別技術針對不同種族的準確率差異巨大,其中針對黑人女性的錯誤率高達35%!

中國工程院院士鄭南寧指出,人工智能研究的一個重要方向,是借鑒認知科學、計算神經科學的研究成果,使計算機通過直覺推理和經驗學習,將自身引導到更高的層次。然而,人腦對真實世界的理解、非完整信息的處理、復雜時空的任務處理能力是當前機器學習無法比擬的,還有人的大腦神經網絡結構的可塑性,以及人腦在非認知因素和認知功能之間的相互作用,都是很難以形式化、公式化的描述。

神經網絡是怎么應用到各領域的?

神經網絡雖然缺乏人類解決問題的強大理解能力,但卻可以通過海量的計算從大量的數據中找到一些通用的模式。因此它們作為輔助工具,已經在各行各業,尤其是在多媒體領域體現了自身的價值。

手寫數字識別應該是神經網絡最早的商業應用之一。大部分的人都可以輕松識別下圖中的手寫數字,但要設計一套計算機程序來識別這些數字,就會發現視覺模式識別的難度。而神經網絡的思想是,利用大量的手寫數字,即訓練樣本,從中自動學習到識別各個數字的規則。而且隨著樣本數量的增加,神經網絡可以學習到更多信息,從而可以進一步提升準確度。目前最好的商用神經網絡已經足夠好到能被銀行用來處理支票,以及被郵局用來識別地址。

揭秘人工智能神經網絡為何無法實現人類的推理或產生意識

MNIST手寫數字數據集一覽

手寫數字或許有些過于簡單,那么使用神經網絡發現地外行星,就更能顯示它的能力了。谷歌和得克薩斯大學奧斯丁分校合作,利用上萬顆被標記的恒星數據,訓練了一個卷積神經網絡,訓練結果顯示,神經網絡判別行星的準確率高達96%。然后,研究人員讓這個神經網絡處理2009年到2013年觀測到的670顆恒星的數據集,通過微小的特征變化,發現了兩個星系存在地外行星的可能性非常高。經過研究人員的驗證,確認了這兩顆新的行星。

神經網絡發現的開普勒-90星系與太陽系的對比

近日,美國FDA首次批準了用于檢測糖尿病視網膜病變的人工智能產品:IDx-DR。這次FDA評估了來自10個初級衛生保健點的900名糖尿病患者的視網膜臨床研究圖像數據,IDx-DR能夠正確識別輕度以上糖尿病性視網膜病變的準確率為87.4%,而正確識別沒有輕度以上的糖尿病性視網膜病變的準確率為89.5%。

在目前比較火熱的無人車領域,雖然各大廠商還在研究測試通用的解決方案,但在一些具體的案例上已經有了一些成果。圖森未來使用自主研發的深度學習感知算法,能夠做到讓攝像頭像人眼一樣實時感知行車周邊環境,檢測和跟蹤視野中的各種物體,能夠對可視場景進行像素級的解讀。憑借視覺高精度定位和多傳感器融合技術,能夠實現高速公路上的無人駕駛,幫助貨運企業降低成本,加快貨運周轉。

總之,神經網絡在不斷地影響著生活、醫療和出行,但科研界對它有更多理性的看法。伯克利大學機器學習專家Michael I. Jordan認為,計算機科學仍然是最首要的學科,人工智能還無法取而代之,而神經網絡只是該領域中仍在發展中的一個部份。

“現在要問神經網絡會把我們帶多遠還為時尚早。”最看好神經網絡發展前景的專家題討論成員——OpenAI共同創辦人兼研究總監Ilya Sutskever表示,“這些模型很難理解。例如,將機器視覺作為一種程序真的很不可思議,但現在我們對不可思議的問題都能提出不可思議的解決方案了。”

無論如何,我們目前正處理人工智能對社會的變革過程中,它們已經從實驗室過渡到了商業部署。無疑,廣泛的工業領域將受到龐大的數據和數據分析功能的深遠影響。盡管神經網絡還無法實現基本的人類推理和理解力,但它們將是建構人工智能漫漫長路上所用到的重要工具之一。

雖然現在神經網絡還無法產生意識,但隨著信息科學、認知科學、神經生物學、心理學等前沿學科和交叉學科的深度融合與不斷發展,人工智能將會迎來新的發展高潮。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4772

    瀏覽量

    100792
  • 人工智能
    +關注

    關注

    1791

    文章

    47294

    瀏覽量

    238578

原文標題:什么是人工智能神經網絡?它為何無法實現人類的推理或產生意識?

文章出處:【微信號:drc_iite,微信公眾號:全球技術地圖】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    在這五件事情上 人工智能人類更出色

    導讀:雖然人工智能已經征服了很多人類憑借自身智力所筑起的“高城”,但由于其缺乏人類的普遍推理能力,因此依然有著自身的局限性。 在很多方面我們已經看到了這樣的變化,即便是在一些和我們
    發表于 01-15 12:09

    人工智能事實上是一種生物進化歷程的壓縮

    觀。研究范疇語言的學習與處理,知識表現,智能搜索,推理,規劃,機器學習,知識獲取,組合調度問題,感知問題,模式識別,邏輯程序設計,軟計算,不精確和不確定的管理,人工生命,神經網絡,復雜
    發表于 03-08 10:56

    人工智能--失業將是人類面臨的最大挑戰

    ?是不是像科幻小說中那樣,機器人會有意識,它能夠保護自己,因此就會傷害人類。李開復覺得這只是一個假設,可能發生,也可能不發生。我們今天還沒有足夠的科學理論來做一個客觀的、確定的判斷。  在他看來,今天的人工智能
    發表于 06-27 11:06

    人工神經網絡算法的學習方法與應用實例(pdf彩版)

    的基本處理單元,它是神經網絡的設計基礎。神經元是以生物的神經系統的神經細胞為基礎的生物模型。在人們對生物神經系統進行研究,以探討
    發表于 10-23 16:16

    人工智能:超越炒作

    。對于人工智能用例在當前物聯網環境中變為現實,必須滿足三個條件:非常大的真實數據集具有重要處理能力的硬件架構和環境開發新的強大算法和人工神經網絡(ANN)以充分利用上述內容很明顯,后兩種要求相互依賴,并且
    發表于 05-29 10:46

    人工神經網絡實現方法有哪些?

    人工神經網絡(Artificial Neural Network,ANN)是一種類似生物神經網絡的信息處理結構,它的提出是為了解決一些非線性,非平穩,復雜的實際問題。那有哪些辦法能實現
    發表于 08-01 08:06

    人工智能神經網絡ADC設計方面各位有什么見解呢?

    最近在看人工智能神經網絡存算一體這些方面的ADC設計方向,貌似跟一般的ADC方向是一樣的,都是希望朝著低功耗高精度和高速發展,在這幾個其他特殊的方向各位有什么見解呢?
    發表于 06-24 08:17

    人工智能對汽車芯片設計的影響是什么

    點擊上方“藍字”,關注我們,感謝!人工智能(AI)以及利用神經網絡的深度學習是實現高級駕駛輔助系統(ADAS)和更高程度車輛自主性的強大技術。隨著人工智能研究的快速發展,設計人員正面臨
    發表于 12-17 08:17

    圖像預處理和改進神經網絡推理的簡要介紹

    為提升識別準確率,采用改進神經網絡,通過Mnist數據集進行訓練。整體處理過程分為兩步:圖像預處理和改進神經網絡推理。圖像預處理主要根據圖像的特征,將數據處理成規范的格式,而改進神經網絡
    發表于 12-23 08:07

    隱藏技術: 一種基于前沿神經網絡理論的新型人工智能處理器

    隱藏技術: 一種基于前沿神經網絡理論的新型人工智能處理器 Copy東京理工大學的研究人員開發了一種名為“ Hiddenite”的新型加速器芯片,該芯片可以在計算稀疏“隱藏神經網絡”時達到最高的精度
    發表于 03-17 19:15

    《移動終端人工智能技術與應用開發》人工智能的發展與AI技術的進步

    人工智能打發展是算法優先于實際應用。近幾年隨著人工智能的不斷普及,許多深度學習算法涌現,從最初的卷積神經網絡(CNN)到機器學習算法的時代。由于應用環境的差別衍生出不同的學習算法:線性回歸,分類與回歸樹
    發表于 02-17 11:00

    神經網絡為何無法實現人類推理產生意識

    一個經典的神經網絡一般包含三個層次:輸入層、隱藏層和輸出層。而這三個層分別模仿的是神經元的樹突、軸突和軸突末梢。輸入層接收外部的輸入數據,比如圖片、文本、語音等,通過,隱層抽象數據的通用模式,進而通過輸出層輸出模型的計算的結果。
    的頭像 發表于 04-17 15:16 ?2684次閱讀

    人工智能-BP神經網絡算法的簡單實現

    人工智能-BP神經網絡算法的簡單實現說明。
    發表于 05-25 11:30 ?12次下載

    神經網絡人工智能的關系是什么

    神經網絡人工智能的關系是密不可分的。神經網絡人工智能的一種重要實現方式,而人工智能則是
    的頭像 發表于 07-03 10:25 ?1138次閱讀

    人工智能人工神經網絡有什么區別

    人工智能是一門研究如何使計算機模擬人類智能行為的學科。它起源于20世紀40年代,當時計算機科學家們開始嘗試開發能夠模擬人類思維過程的計算機程序。
    的頭像 發表于 07-04 09:39 ?1263次閱讀
    主站蜘蛛池模板: 免费在线视频观看| 日本一区免费观看| 天天射日日操| 天天色综合社区| 奇米在线| 成人国产精品2021| 欧美第四色| 中文字幕精品一区二区三区视频| 激情五月视频| 亚洲激情网站| 二区视频在线| 午夜免费成人| 三级黄网站| 久久精品94精品久久精品| 国产丝袜va丝袜老师| 99久久综合精品免费| 天天做天天爱夜夜大爽完整| 欧美日操| 中国人69xxx大全| 亚洲免费毛片| 综合激情网五月| 搜索黄色毛片| 免费能直接在线观看黄的视频| 国产在线观看色| freesex性欧美炮机喷潮| 天天爽夜夜爽每晚高澡| 久草色香蕉| 38pao强力打造永久免费高清视频| 欧美.亚洲.日本一区二区三区| 亚洲综合色视频| 日本大片免a费观看在线| 黄页网址免费观看18网站| 俺去操| 欧美tube44videos| 欧洲性开放大片免费观看视频| 日本aaaa级毛片在线看| 天堂资源站| 狠狠亚洲狠狠欧洲2019| 天天看毛片| 黄色大秀| 五月天婷婷一区二区三区久久|