第三代半導(dǎo)體的材料特性
與第一二代半導(dǎo)體材料相比,第三代半導(dǎo)體材料具有更寬的禁帶寬度、更高的擊穿電場、更高的熱導(dǎo)率、更高的電子飽和速率及更高的抗輻射能力(圖2),更適合于制作高溫、高頻、抗輻射及大功率器件,通常又被稱為寬禁帶半導(dǎo)體材料(禁帶寬度大于2.2eV),亦被稱為高溫半導(dǎo)體材料。從目前第三代半導(dǎo)體材料和器件的研究來看,較為成熟的是SiC和GaN半導(dǎo)體材料,而氧化鋅、金剛石、氮化鋁等材料的研究尚屬起步階段。碳化硅(SiC)和氮化鎵(GaN)——并稱為第三代半導(dǎo)體材料的雙雄。
圖2第三代半導(dǎo)體的材料特性
相對于Si,SiC的優(yōu)點(diǎn)很多:有10倍的電場強(qiáng)度,高3倍的熱導(dǎo)率,寬3倍禁帶寬度,高1倍的飽和漂移速度。因?yàn)檫@些特點(diǎn),用SiC制作的器件可以用于極端的環(huán)境條件下。微波及高頻和短波長器件是目前已經(jīng)成熟的應(yīng)用市場。42GHz頻率的SiCMESFET用在軍用相控陣?yán)走_(dá)、通信廣播系統(tǒng)中,用SiC作為襯底的高亮度藍(lán)光LED是全彩色大面積顯示屏的關(guān)鍵器件。
在碳化硅SiC中摻雜氮或磷可以形成n型半導(dǎo)體,而摻雜鋁、硼、鎵或鈹形成p型半導(dǎo)體。在碳化硅中大量摻雜硼、鋁或氮可以使摻雜后的碳化硅具備數(shù)量級可與金屬比擬的導(dǎo)電率。摻雜Al的3C-SiC、摻雜B的3C-SiC和6H-SiC的碳化硅都能在1.5K的溫度下?lián)碛谐瑢?dǎo)性,但摻雜Al和B的碳化硅兩者的磁場行為有明顯區(qū)別。摻雜鋁的碳化硅和摻雜B的晶體硅一樣都是II型半導(dǎo)體,但摻雜硼的碳化硅則是I型半導(dǎo)體。
氮化鎵(GaN、Galliumnitride)是氮和鎵的化合物,此化合物結(jié)構(gòu)類似纖鋅礦,硬度很高。作為時下新興的半導(dǎo)體工藝技術(shù),提供超越硅的多種優(yōu)勢。與硅器件相比,GaN在電源轉(zhuǎn)換效率和功率密度上實(shí)現(xiàn)了性能的飛躍。
GaN具備出色的擊穿能力、更高的電子密度及速度、更高的工作溫度。氮化鎵的能隙很寬,為3.4eV,廣泛應(yīng)用于功率因數(shù)校正(PFC)、軟開關(guān)DCDC等電源系統(tǒng)設(shè)計(jì),以及電源適配器、光伏逆變器或太陽能逆變器、服務(wù)器及通信電源等終端領(lǐng)域。
GaN是極穩(wěn)定的化合物,又是堅(jiān)硬的高熔點(diǎn)材料,熔點(diǎn)約為1700℃,GaN具有高的電離度,在Ⅲ—Ⅴ族化合物中是最高的(0.5或0.43)。在大氣壓力下,GaN晶體一般是六方纖鋅礦結(jié)構(gòu)。它在一個元胞中有4個原子,原子體積大約為GaAs的一半。因?yàn)槠溆捕雀撸质且环N良好的涂層保護(hù)材料。
GaN的電學(xué)特性是影響器件的主要因素。未有意摻雜的GaN在各種情況下都呈n型,最好的樣品的電子濃度約為4×1016/cm3。一般情況下所制備的p型樣品,都是高補(bǔ)償?shù)摹?/p>
圖3顯示Si、SiC、GaN半導(dǎo)體的特性對比
第三代半導(dǎo)體材料性能及應(yīng)用
半導(dǎo)體產(chǎn)業(yè)發(fā)展至今經(jīng)歷了三個階段,第一代半導(dǎo)體材料以硅(Si)為代表。第二代半導(dǎo)體材料砷化鎵(GaAs)也已經(jīng)廣泛應(yīng)用。而以氮化鎵(GaN)和碳化硅(SiC)、氧化鋅(ZnO)等寬禁帶為代表的第三代半導(dǎo)體材料,相較前兩代產(chǎn)品,性能優(yōu)勢顯著并受到業(yè)內(nèi)的廣泛好評。 第三代半導(dǎo)體具有高擊穿電場、高飽和電子速度、高熱導(dǎo)率、高電子密度、高遷移率等特點(diǎn), 因此也被業(yè)內(nèi)譽(yù)為固態(tài)光源、電力電子、微波射頻器件的“核芯”以及光電子和微電子等產(chǎn)業(yè)的“新發(fā)動機(jī)”。發(fā)展較好的寬禁帶半導(dǎo)體主要是SiC和GaN,其中SiC的發(fā)展更早一些。SiC、GaN、Si以及GaAs的一些參數(shù)如下圖所示:
可見,SiC和GaN的禁帶寬度遠(yuǎn)大于Si和GaAs,相應(yīng)的本征載流子濃度小于Si和GaAs,寬禁帶半導(dǎo)體的最高工作溫度要高于第一、第二代半導(dǎo)體材料。擊穿場強(qiáng)和飽和熱導(dǎo)率也遠(yuǎn)大于Si和GaAs。以SiC為例,其具有寬的禁帶寬度、高的擊穿電場、高的熱導(dǎo)率、高的電子飽和速率及更高的抗輻射能力, 非常適合于制作高溫、高頻、抗輻射及大功率器件。
產(chǎn)品被市場所接受,價(jià)格和性能是最主要的考慮因素。SiC的性能毋庸置疑,但成本還是比硅產(chǎn)品高,在相同特性、相同電壓、相同使用條件的情況下,大約會比硅產(chǎn)品貴5~6倍,因此,現(xiàn)階段只能從要求高性能、且對價(jià)格不是很敏感的應(yīng)用開始來取代硅產(chǎn)品,例如汽車、汽車充電樁、太陽能等。要取代硅制產(chǎn)品,SiC還是有很大的發(fā)展空間的。當(dāng)SiC的成本能降到硅的2~3倍的時候,應(yīng)該會形成很大的市場規(guī)模。到2020年,EV汽車大規(guī)模推出的時候,SiC市場會有爆發(fā)式的增長。
在應(yīng)用方面,根據(jù)第三代半導(dǎo)體的發(fā)展情況, 其主要應(yīng)用為半導(dǎo)體照明、電力電子器件、激光器和探測器、以及其他4個領(lǐng)域, 每個領(lǐng)域產(chǎn)業(yè)成熟度各不相同,如下圖所示。在前沿研究領(lǐng)域,寬禁帶半導(dǎo)體還處于實(shí)驗(yàn)室研發(fā)階段。
第三代半導(dǎo)體材料優(yōu)勢明顯
回顧半導(dǎo)體產(chǎn)業(yè)的發(fā)展歷程,其先后經(jīng)歷了以硅(Si)為代表的第一代半導(dǎo)體材料,以砷化鎵(GaAs)為代表的第二代半導(dǎo)體材料,在上個世紀(jì),這兩代半導(dǎo)體材料為工業(yè)進(jìn)步、社會發(fā)展做出了巨大貢獻(xiàn)。而如今,以氮化鎵(GaN)、碳化硅(SiC)、氧化鋅、金剛石、氮化鋁為代表的寬禁帶半導(dǎo)體材料被統(tǒng)稱為第三代半導(dǎo)體材料。
作為一類新型寬禁帶半導(dǎo)體材料,第三代半導(dǎo)體材料在許多應(yīng)用領(lǐng)域擁有前兩代半導(dǎo)體材料無法比擬的優(yōu)點(diǎn):如具有高擊穿電場、高飽和電子速度、高熱導(dǎo)率、高電子密度、高遷移率等特點(diǎn),可實(shí)現(xiàn)高壓、高溫、高頻、高抗輻射能力,被譽(yù)為固態(tài)光源、電力電子、微波射頻器件的“核芯”,是光電子和微電子等產(chǎn)業(yè)的“新發(fā)動機(jī)”。
從應(yīng)用范圍來說,第三代半導(dǎo)體領(lǐng)域還具有學(xué)科交叉性強(qiáng)、應(yīng)用領(lǐng)域廣、產(chǎn)業(yè)關(guān)聯(lián)性大等特點(diǎn)。在半導(dǎo)體照明、新一代移動通信、智能電網(wǎng)、高速軌道交通、新能源汽車、消費(fèi)類電子等領(lǐng)域擁有廣闊的應(yīng)用前景,是支撐信息、能源、交通、國防等產(chǎn)業(yè)發(fā)展的重點(diǎn)新材料。
作為新一代半導(dǎo)體照明的關(guān)鍵器件,第三代半導(dǎo)體材料還具有廣泛的基礎(chǔ)性和重要的引領(lǐng)性。從目前第三代半導(dǎo)體材料和器件的研究來看,較為成熟的是氮化鎵(GaN)和碳化硅(SiC)半導(dǎo)體材料,也是最具有發(fā)展前景的兩種材料。
與第一代半導(dǎo)體材料硅相比,碳化硅有諸多優(yōu)點(diǎn):有高10倍的電場強(qiáng)度,高3倍的熱導(dǎo)率,寬3倍禁帶寬度,高1倍的飽和漂移速度。因?yàn)檫@些特點(diǎn),使其小至LED照明、家用電器、新能源汽車,大至軌道交通、智能電網(wǎng)、軍工航天都具備優(yōu)勢,所以碳化硅市場被各產(chǎn)業(yè)界頗為看好。
而氮化鎵直接躍遷、高電子遷移率和飽和電子速率、成本更低的優(yōu)點(diǎn)則使其擁有更快的研發(fā)速度。兩者的不同優(yōu)勢決定了應(yīng)用范圍上的差異,在光電領(lǐng)域,氮化鎵占絕對的主導(dǎo)地位,而在其他功率器件領(lǐng)域,碳化硅適用于1200V以上的高溫大電力領(lǐng)域,GaN則更適用900V以下的高頻小電力領(lǐng)域。可謂各有優(yōu)勢。
我國第三代半導(dǎo)體材料發(fā)展面臨的機(jī)遇挑戰(zhàn)
在巨大優(yōu)勢和光明前景的刺激下,目前全球各國均在加大馬力布局第三代半導(dǎo)體領(lǐng)域,但我國在寬禁帶半導(dǎo)體產(chǎn)業(yè)化方面進(jìn)度還比較緩慢,寬禁帶半導(dǎo)體技術(shù)亟待突破。
“最大的瓶頸是原材料。”中科院半導(dǎo)體研究所研究員、中國電子學(xué)會半導(dǎo)體與集成技術(shù)分會秘書長王曉亮認(rèn)為,我國原材料的質(zhì)量、制備問題亟待破解。此外,湖南大學(xué)應(yīng)用物理系副教授曾健平也表示,目前我國對SiC晶元的制備尚為空缺,大多數(shù)設(shè)備靠國外進(jìn)口。
“國內(nèi)開展SiC、GaN材料和器件方面的研究工作比較晚,與國外相比水平較低,阻礙國內(nèi)第三代半導(dǎo)體研究進(jìn)展的重要因素是原始創(chuàng)新問題。”國家半導(dǎo)體照明工程研發(fā)及產(chǎn)業(yè)聯(lián)盟一專家表示,國內(nèi)新材料領(lǐng)域的科研院所和相關(guān)生產(chǎn)企業(yè)大都急功近利,難以容忍長期“只投入,不產(chǎn)出”的現(xiàn)狀。因此,以第三代半導(dǎo)體材料為代表的新材料原始創(chuàng)新舉步維艱。
原始創(chuàng)新即從無到有的創(chuàng)新過程,其特點(diǎn)是投入大、周期長。以SiC為例,其具有寬的禁帶寬度、高的擊穿電場、高的熱導(dǎo)率、高的電子飽和速率及更高的抗輻射能力,非常適合于制作高溫、高頻、抗輻射及大功率器件。然而生長SiC晶體難度很大,雖然經(jīng)過了數(shù)十年的研究發(fā)展,到目前為止仍只有美國的Cree公司、德國的SiCrystal公司和日本的新日鐵公司等少數(shù)幾家公司掌握了SiC的生長技術(shù),能夠生產(chǎn)出較好的產(chǎn)品,但離真正的大規(guī)模產(chǎn)業(yè)化應(yīng)用也還有較大的距離。因此,以第三代半導(dǎo)體材料為代表的新材料原始創(chuàng)新舉步維艱,是實(shí)現(xiàn)產(chǎn)業(yè)化的一大桎梏。
“第三代半導(dǎo)體對我們國家未來產(chǎn)業(yè)會產(chǎn)生非常大的影響,其應(yīng)用技術(shù)的研究比較關(guān)鍵,若相關(guān)配套技術(shù)及產(chǎn)品跟不上,第三代半導(dǎo)體的材料及器件的作用和效率可能會發(fā)揮不好,所以要全產(chǎn)業(yè)鏈協(xié)同發(fā)展。”中興通訊副總裁晏文德表示。
是機(jī)遇也是挑戰(zhàn)。未來,我國第三代半導(dǎo)體產(chǎn)業(yè)將面臨許許多多的難題。就像北京大學(xué)寬禁帶半導(dǎo)體研發(fā)中心沈波教授所說,當(dāng)前我國發(fā)展第三代半導(dǎo)體面臨的機(jī)遇非常好,因?yàn)檫^去十年,在半導(dǎo)體照明的驅(qū)動下,氮化鎵無論是材料和器件成熟度都已經(jīng)大大提高,但第三代半導(dǎo)體在電力電子器件、射頻器件方面還有很長的路要走,市場和產(chǎn)業(yè)剛剛啟動,我們還面臨巨大挑戰(zhàn),必須共同努力。
-
半導(dǎo)體
+關(guān)注
關(guān)注
334文章
27563瀏覽量
220307 -
半導(dǎo)體材料
+關(guān)注
關(guān)注
11文章
547瀏覽量
29615
發(fā)布評論請先 登錄
相關(guān)推薦
評論