在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一個高效的低延遲視頻語義分割算法

商湯科技SenseTime ? 來源:未知 ? 作者:李倩 ? 2018-05-31 15:05 ? 次閱讀

自動駕駛領域,目前基于深度學習的分割算法運算負荷仍然較大,不能有效移植到嵌入式端,在車輛上運行。在保證分割精度的情況下,如何才能達到高實時性?CVPR 2018商湯科技論文解讀第4期為您帶來解讀。

以下是在自動駕駛場景理解領域,商湯科技發表的一篇亮點報告(Spotlight)論文,提出極低延遲性的視頻語義分割算法。

簡介

近年來由于深度神經網絡,尤其全卷經神經網絡的迅速發展,圖像語義分割取得了飛速的進展,但是如何高效的實現視頻語義分割仍然是一個極富挑戰性的問題。其困難在于:

與圖像分割相比,視頻分割通常涉及更多的數據。比如,視頻每秒通常包含15~30幀,分析視頻因而需要更多的計算資源;

許多實際應用(如自動駕駛)中的視頻分割模塊需要實現視頻分割的低延遲性。

對于視頻語義分割任務,大部分現有工作關注如何在每幀計算量和分割精度之間的達到一個平衡點,卻并沒有深入的思考和探討算法延遲性這個因素。現有工作可以被大致分為兩類:

高層特征的時序建模方法

中間層特征傳播的方法

前者主要在一個完整的逐幀模型上增加一些提取時序信息的操作,因此不能減少計算量。后者(如Clockwork Net、Deep Feature Flow等工作)通過重用歷史幀的特征來加速計算,這類方法可以減少視頻整體計算量,然而忽略了延遲方面的因素。這類方法的延遲和精度對比(如圖1所示),可以看出這類方法很難同時實現低延遲和高精度。我們的工作則立足降低每幀平均計算量的同時,實現分割的高精度,降低算法的最大延遲。

圖1:

Cityscapes數據集上

不同方法延遲和分割精度的對比

算法核心思想

本文算法使用視頻分割中經典的基于關鍵幀調度的模式來有效平衡計算量和精度。具體來說,如果當前處理幀為關鍵幀,則使用整個分割網絡來獲得語義分割的標簽,如圖2左部分所示;如果當前幀不為關鍵幀,則變換分割網絡高層歷史幀特征為當前幀高層特征,再使用分割網絡的語義分類操作獲得當前幀的語義標簽,如圖2右部分所示。關鍵幀的選擇和特征跨幀傳播兩個操作均基于同樣的網絡低層特征,具體操作在之后章節詳述。在劃分分割網絡結構時,算法盡量保證低層網絡的運行時間遠小于高層網絡,(如圖2所示)低層網絡耗時61ms,而高層網絡耗時300ms。這樣考慮的出發點在于:

因低層網絡的計算代價很小,算法可以基于低層網絡提取的特征,增加少部分額外的計算來完成關鍵幀選擇和特征跨幀傳播;

當前幀的低層特征同樣包含當前幀的信息,可以互補來自不同時間的傳播特征;

所有的操作均復用了逐幀模型的結構,算法整體模型更加簡潔。

圖2:

自適應特征傳播模塊

自適應特征跨幀傳播

特征傳播關注如何從歷史幀傳播高層特征到當前幀,降低模型總體計算量,先前的變換方法主要分為兩類:

基于圖像或底層特征獲取的光流信息,跨幀傳播不同幀的語義分類特征。這類方法雖然有效,但是計算光流往往代價太大,而獲得當前幀的語義標簽并不需要嚴格的點到點映射。

平移不變性卷積。這種操作在每個位置均使用相同的卷積核來映射特征,因此不能適應不同位置的內容變化。

本文設計了一個位置相關的卷積操作來進行跨幀特征傳播。它的計算量相對較低,同時又能適應不同位置的特征進行自適應傳播。不同位置的卷積核參數通過一個小的網絡回歸學習獲得(如圖2中weight predictor所示),其能很好的適應不同空間位置內容的變化。整體特征傳播模塊(包含當前幀低層網絡、卷積核預測和空間變化卷積)包含兩大優勢:

總體計算量相較高層網絡部分計算量大為減小,因而可以快速的獲得當前幀的語義標簽;

可以很好的保持視頻鄰近幀的抖動或者其他快速變化,實驗結果表明這種卷積操作融合方法能夠有效的提升7% mIOU的精度。

整體結果如表1所示,結果展示了本文算法復用逐幀網絡的優勢,可以從低層網絡提取的特征來互補跨幀傳播的特征。

表1:

不同特征傳播模塊對最終分割精度的影響

自適應關鍵幀調度

視頻處理算法中,一個好的關鍵幀選擇算法能夠隨視頻內容變化自適應的調整關鍵幀選擇頻率,在視頻內容變化大的時間區間更多的選擇關鍵幀,而在視頻變化緩慢的區間較少的選擇關鍵幀,從而在有效保持視頻流中信息的前提下,降低整體計算量。現有的關鍵幀調度算法分為固定長度調度和基于閾值調度兩種方案,前者每隔n幀選擇一次關鍵幀,這種方式不能適應不同視頻幀之間內容的變化,后者則通過計算當前幀高層特征和歷史幀高層特征之間的差值,通過設定一個閾值來決定是否是否選擇當前幀為關鍵幀,這種方法能一定程度的適應不同幀之間的內容變化,但是特征的差值容易波動,較難設定一個統一的閾值。

本文算法使用當前幀語義標簽和前一個關鍵幀語義標簽的差異值來作為視頻內容變化程度的判斷依據,如圖3所示,若當前幀距上一個關鍵幀越遠,則語義標簽的差值就越大。當差值超過某個閾值的時候,則選擇該幀作為關鍵幀。但是直接計算這樣一個差異值較為困難,本文在Cityscapes和Camvid兩個數據集上發現低層特征和語義標簽的變化值有很大的關聯,因而利用低層特征來預測這樣該差值,即輸入歷史幀低層特征和當前幀低層特征到一個回歸器來回歸該差異值。不同的關鍵幀選擇策略的結果如圖4所示,所有的策略均采用本文提出的自適應特征傳播方法,可以看出提出的自適應關鍵幀調度方法明顯優于基于固定間隔和基于高層特征差值閾值的調度策略。

圖3:

自適應的關鍵幀選擇

圖4:

不同調度策略對最終分割性能的影響

整體系統框架

本文算法整體框架如圖5所示,當視頻的序列幀不斷輸入時,在第一幀時刻,進行初始化操作,即輸入圖片幀給整個網絡,獲得低層特征和高層特征。在接下來的時刻t進行自適應的計算,首先計算低層特征:輸入和上一個關鍵幀低層特征至自適應關鍵幀選擇模塊,判斷當前幀是否為關鍵幀。若為關鍵幀,則輸入底層特征至高層網絡獲得高層特征;否則輸入底層特征至自適應特征傳播模塊獲得當前幀高層特征,進而通過語義分類獲得當前幀語義標簽。

圖5:

系統整體框架示意圖

該系統極大的減少了整體耗時,其中判斷關鍵幀操作耗時僅20ms,跨幀特征傳播僅需38ms,而高層網絡計算高層特征則需要299ms。通過這種方式,整個系統可以明顯的降低系統的平均每幀計算量(如表2所示),自適應調度策略和自適應特征傳播方法可以把每幀平均計算時間由360ms減為171ms,精度僅損失3.4% mIOU。

表2:

Cityscape數據集上

與目前先進方法結果的對比

同時本文設計了一種低延遲的調度策略進一步減少整體系統的延遲,適用于自動駕駛等需要及時響應的系統。具體而言,當前幀被判斷為關鍵幀時,低延遲調度策略仍然從歷史幀傳播特征到當前幀并將其緩存為當前幀高層特征,同時啟用一個后臺線程來計算當前幀高層特征(如果直接運行高層網絡部分會造成299ms的延遲),一旦計算完成就取代緩存的高層特征。實驗結果表明(如表2所示),這種低延遲的調度策略能夠將延遲由360ms降為119ms,同時只損失較小的分割精度(由78.84%降為75.89%)。

結論

本文提出了一個高效的低延遲視頻語義分割算法,其主要由自適應特征傳播和自適應關鍵幀調度模塊組成。該算法在關注平衡精度和計算量的同時力求降低系統的延遲,Cityscapes和Camvid兩個數據集上的實驗結果證明了該方法的有效性。作者希望在未來工作中在模型壓縮和模型設計方面進一步降低算法的總體延遲和計算量。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4771

    瀏覽量

    100772
  • 視頻
    +關注

    關注

    6

    文章

    1945

    瀏覽量

    72914
  • 自動駕駛
    +關注

    關注

    784

    文章

    13812

    瀏覽量

    166461

原文標題:CVPR 2018 | 商湯科技Spotlight論文詳解:極低延遲性的視頻語義分割

文章出處:【微信號:SenseTime2017,微信公眾號:商湯科技SenseTime】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    基于TICA和GMM的視頻語義概念檢測算法

    針對目前詞袋模型( BoW)視頻語義概念檢測方法中的量化誤差問題,為了更有效地自動提取視頻的底層特征,提出種基于拓撲獨立成分分析( TICA)和高斯混合模型(GMM)的
    發表于 12-22 15:24 ?0次下載
    基于TICA和GMM的<b class='flag-5'>視頻</b><b class='flag-5'>語義</b>概念檢測<b class='flag-5'>算法</b>

    聚焦語義分割任務,如何用卷積神經網絡處理語義圖像分割

    對象。作者將沿著該領域的研究脈絡,說明如何用卷積神經網絡處理語義圖像分割的任務。 更具體地講,語義圖像分割的目標在于標記圖片中每
    發表于 09-17 15:21 ?568次閱讀

    Facebook AI使用單神經網絡架構來同時完成實例分割語義分割

    新架構“全景 FPN ”在 Facebook 2017 年發布的 Mask R-CNN 的基礎上添加了用于語義分割的分支。這
    的頭像 發表于 04-22 11:46 ?2888次閱讀
    Facebook AI使用單<b class='flag-5'>一</b>神經網絡架構來同時完成實例<b class='flag-5'>分割</b>和<b class='flag-5'>語義</b><b class='flag-5'>分割</b>

    語義分割算法系統介紹

    文章。作者Xavier CHEN針對語義分割進行系統的介紹,從原理解析到算法發展總結,文章思路清晰,總結全面,推薦大家閱讀。 本文作者為Xavier CHEN,畢業于浙江大學,在知乎持續分享前沿文章。 01 前言 之前做了
    的頭像 發表于 11-05 10:34 ?6724次閱讀

    語義分割方法發展過程

    語義分割的最簡單形式是對區域設定必須滿足的硬編碼規則或屬性,進而指定特定類別標簽. 編碼規則可以根據像素的屬性來構建,如灰度級強度(gray level intensity). 基
    的頭像 發表于 12-28 14:28 ?5118次閱讀

    分析總結基于深度神經網絡的圖像語義分割方法

    語義分割和弱監督學習圖像語義分割,對每種方法中代表性算法的效果以及優缺點進行對比與分析,并闡述深度神經網絡對
    發表于 03-19 14:14 ?21次下載
    分析總結基于深度神經網絡的圖像<b class='flag-5'>語義</b><b class='flag-5'>分割</b>方法

    基于深度神經網絡的圖像語義分割方法

    對應用于圖像語義分割的幾種深度神經網絡模型進行簡單介紹,接著詳細闡述了現有主流的基于深度神經網絡的圖像語義分割方法,依據實現技術的區別對圖像語義
    發表于 04-02 13:59 ?11次下載
    基于深度神經網絡的圖像<b class='flag-5'>語義</b><b class='flag-5'>分割</b>方法

    全局雙邊網絡語義分割算法綜述

    語義分割任務是對圖像中的物體按照類別進行像素級別的預測,其難點在于在保留足夠空間信息的同時獲取足夠的上下文信息。為解決這問題,文中提出了全局雙邊網絡語義
    發表于 06-16 15:20 ?16次下載

    語義分割數據集:從理論到實踐

    語義分割是計算機視覺領域中的重要問題,它的目標是將圖像或視頻中的語義信息(如人、物、場景等)
    的頭像 發表于 04-23 16:45 ?939次閱讀

    語義分割標注:從認知到實踐

    隨著人工智能技術的不斷發展,語義分割標注已經成為計算機視覺領域的熱門話題。語義分割是指將圖像
    的頭像 發表于 04-30 21:20 ?1114次閱讀

    PyTorch教程-14.9. 語義分割和數據集

    語義分割中標記的像素級邊界明顯更細粒度。 圖 14.9.1語義分割中圖像的狗、貓和背景的標簽。? 14.9.1。圖像分割
    的頭像 發表于 06-05 15:44 ?651次閱讀
    PyTorch教程-14.9. <b class='flag-5'>語義</b><b class='flag-5'>分割</b>和數據集

    深度學習圖像語義分割指標介紹

    深度學習在圖像語義分割上已經取得了重大進展與明顯的效果,產生了很多專注于圖像語義分割的模型與基準數據集,這些基準數據集提供了套統
    發表于 10-09 15:26 ?402次閱讀
    深度學習圖像<b class='flag-5'>語義</b><b class='flag-5'>分割</b>指標介紹

    圖像分割語義分割中的CNN模型綜述

    圖像分割語義分割是計算機視覺領域的重要任務,旨在將圖像劃分為多個具有特定語義含義的區域或對象。卷積神經網絡(CNN)作為深度學習的種核心
    的頭像 發表于 07-09 11:51 ?903次閱讀

    圖像分割語義分割的區別與聯系

    圖像分割語義分割是計算機視覺領域中兩重要的概念,它們在圖像處理和分析中發揮著關鍵作用。 1. 圖像分割簡介 圖像
    的頭像 發表于 07-17 09:55 ?955次閱讀

    圖像語義分割的實用性是什么

    圖像語義分割種重要的計算機視覺任務,它旨在將圖像中的每個像素分配到相應的語義類別中。這項技術在許多領域都有廣泛的應用,如自動駕駛、醫學圖像分析、機器人導航等。
    的頭像 發表于 07-17 09:56 ?432次閱讀
    主站蜘蛛池模板: 看日本黄色大片| 噜噜色噜噜| 日本理论片www视频| 人人入人人爱| 看全色黄大色大片免费久久| 午夜亚洲国产精品福利| 色天天综合色天天天天看大| 激情五月激情综合网| 午夜h| 清冷双性被cao的合不拢腿| 在线小视频你懂的| 欧美ol丝袜高跟秘书在线观看| 国产黄色小视频网站| 轻点灬大ji巴太粗太长了爽文| 色批| 国模大胆一区二区三区| 午夜毛片不卡高清免费| 69日本人xxxxxxxx18| 亚洲色图图片| 欧美一区二区三区免费| 丁香视频在线观看播放| 天天透天天操| 成人免费久久精品国产片久久影院 | 99久免费精品视频在线观看2| free性乌克兰高清videos| 中国女人a毛片免费全部播放| 三级在线观看视频网站| 国产福利你懂的| 久热国产在线| 嗯好舒服好爽好快好大| 九九99久久精品午夜剧场免费 | 日日操日日爽| 在线观看精品国产福利片100| 国产精品一区二区三区四区 | 欧美另类图片亚洲偷| 在线99热| 四虎永久免费网站入口2020| 久久久久久国产精品免费 | 手机在线观看一级午夜片| 六月丁香激情| 香港澳门a级三级三级全黄|