在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一個基于任務的深度循環網絡,加入循環單元可以解決更困難的視覺問題

zhKF_jqr_AI ? 來源:未知 ? 作者:李倩 ? 2018-07-08 09:48 ? 次閱讀

編者按:深度卷積神經網絡對視覺系統來說是個不錯的模型,但這些靜態系統不能解釋現實視覺反應中的短暫動態行為。于是神經科學家們建造了一個基于任務的深度循環網絡,加入循環單元可以解決更困難的視覺問題。以下是論智的編譯。

摘要

前饋卷積神經網絡(CNN)是目前最先進的目標分類任務工具,例如ImageNet。另外,他們是靈長類動物大腦中視覺系統中精準定量平均響應時間的模型。然而,生物視覺系統的兩種普遍存在的結構特征是典型CNN不具備的,即皮質區域內的局部循環,以及下游區域到上游區域的遠距離反饋。在這篇文章中,我們研究了循環結構在提高分類性能時的作用,我們發現,在ImageNet任務中,標準的循環形式(vanilla RNN和LSTM)無法在深度CNN中達到良好表現。相反,能將兩種結構特征——bypassing和gating——結合起來的結構能將任務精確度極大地提升。

我們將這些設計原則應用在數千個模型中的自動搜索上,它們確定了局部循環單元和遠距離反饋連接對目標辨認很有用。另外,這些經過任務優化的卷積RNN能比反饋網絡更好地解釋靈長類動物神經系統中神經元的活動,說明大腦的循環連接在執行不同的視覺動作時非常重要。

背景介紹

大腦的傳感器系統必須在含有噪音的復雜感知數據中檢測出有意義的模式。視覺環境可以揭示物體正面或負面的價值,例如食物種類、危險的信號或難忘的人。然而這些信號在不同場景中的位置、姿勢、背景和前景都相差很大,所以從低屬性圖像中很難辨別出目標物體。

最近的研究表明,針對任務優化的深度卷積神經網絡(CNN)是靈長類動物大腦的視覺編碼精確的量化模型。CNN經過訓練,可以識別ImageNet中的物體,并且能比其他模型更好地解釋視覺系統中的神經元反饋。模型的各個卷積層分辨提供不同視覺區域的線性預測。

但是,靈長動物的視覺系統有些結構并沒有被前饋CNN完全模仿,即皮質區域的局部循環連接和不同區域的遠距離連接。目前還不清楚循環的作用,有科學家猜想循環是用來填補缺失的數據,或進行從上到下基于注意力的特征調整。

雖然經過增強的有循環結構的CNN可以用來解決相對簡單的遮擋或預測任務,但這些模型既不能適應復雜的任務(前饋CNN可以解決),也不能解釋神經反饋。事實上,由于目標識別的復雜性和多樣性,ImageNet中的很多圖片質量都參差不齊,所以有可能要用到上述的循環處理機制。而且最近很多對ImageNet高效的解決方法都提出在多個圖層之中用同樣的結構基序。于是我們選擇研究循環結構究竟能否提高模型在ImageNet數據集上的分類表現。雖然其他工作用CNN的輸出最為RNN的輸入解決視覺任務,在這里我們將循環結構和CNN本身結合,因為這類結構在神經科學中是非常常見的。

模型結構

為了研究卷積RNN的空間結構,我們用TensorFlow庫增強標準的、有局部和遠距離循環結構的CNN,如圖所示:

卷積循環網絡中含有局部循環和遠程前饋連接的結合

在卷積RNN的每個圖層中,來自較高層的前饋輸入被重新修改尺寸,以匹配前饋輸入的空間維度。兩種類型的輸入都由標準的2D卷積處理。如果該層有任何局部循環,則輸出會輸入到下一個循環單元。

在這項工作中,所有形式的循環都向前饋基礎模型中添加了參數。由于這樣可以提升模型的性能,我們訓練了兩種與卷積RNN相對照的模型:

有更多卷積過濾層的前饋模型(更寬)或者更多層的模型(更深),以匹配循環模型中參數的數量;

將卷積模型展開后進行復制,其中的參數數量和原始的卷積RNN一樣。

實驗結果

新型RNN結構提高了任務處理性能

我們首先測試了有著標準RNN單位的增強CNN(例如vanilla RNN和LSTM)能夠提高在ImageNet目標物體辨認上的表現。二者對比如圖所示:

結果發現在類似AlexNet這樣的六層前饋上,精確度稍有提升。

但這里的循環結構存在兩個問題,首先,由于單一參數數量的增多,這些卷積RNN并沒有檢測性能提升了多少。其次,將前饋模型做得更寬或更深,比單純地增加標準RNN單元性能提升得更多,參數卻更少。這說明標準RNN結構雖然適用于很多種任務,但是不適合深度CNN中的任務。

我們研究后發現這是因為標準RNN中缺少兩種關鍵屬性:

Gating,即隱藏狀態的值決定下一步的輸入有多少能通過、保留或丟棄;

Bypassing,即一個零初始化的隱藏狀態允許前饋輸入通過下一層。

重要的是,這兩種特征都是為了解決梯度消失的問題。于是我們將兩種特征部署到循環結構中。具體結果如圖:

之后經過對更深的循環結構進行超參數優化后,我們用卷積RNN模擬了靈長類動物腹流(參與物體識別)神經。

結語

實際上,這篇論文詳細介紹了CNN中的循環單元能在目標識別中有效提高性能,我們的發現能提高不同的局部循環結構對應大腦中不同的行為的概率。我們相信通過將該方法應用到CNN上,我們能提高現有的很多方法的性能。未來的實驗將探尋不同的任務是否能在卷積RNN對神經的反饋上取代監督目標辨別。另外還將測試模型能否低于其他形式的噪聲。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2551

    文章

    51125

    瀏覽量

    753762
  • 神經網絡
    +關注

    關注

    42

    文章

    4772

    瀏覽量

    100792
  • 視覺系統
    +關注

    關注

    3

    文章

    335

    瀏覽量

    30730

原文標題:任務導向的視覺系統卷積循環模型

文章出處:【微信號:jqr_AI,微信公眾號:論智】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    什么是RNN (循環神經網絡)?

    循環神經網絡 (RNN) 是深度學習結構,它使用過去的信息來提高網絡處理當前和將來輸入的性能。RNN 的獨特之處在于該
    發表于 02-29 14:56 ?4055次閱讀
    什么是RNN (<b class='flag-5'>循環</b>神經<b class='flag-5'>網絡</b>)?

    利用深度循環神經網絡對心電圖降噪

    具體的軟硬件實現點擊 http://mcu-ai.com/ MCU-AI技術網頁_MCU-AI 我們提出了種利用由長短期記憶 (LSTM) 單元構建的深度循環神經
    發表于 05-15 14:42

    結合小波變換的LSTM循環神經網絡的稅收預測

    來去除稅收數據中的噪聲,提高模型的泛化能力。LSTM神經網絡通過加入隱藏神經單元和門控單元能夠妤地學習到歷史稅收數據之間的相關關系,并進
    發表于 04-28 11:26 ?10次下載
    結合小波變換的LSTM<b class='flag-5'>循環</b>神經<b class='flag-5'>網絡</b>的稅收預測

    種門控循環單元興趣點推薦算法

    對時間序列和相關距離信息進行建模,提取用戶訪問興趣點的偏好特征,并基于該特征對用戶進行興趣點推薦。在真實數據集上進行的實驗結果表明,與傳統循環神經網絡算法相比,該算法能夠覆蓋用戶訪問興趣點的長序列,推薦結果
    發表于 05-13 16:19 ?6次下載

    PyTorch教程10.2之門控循環單元(GRU)

    電子發燒友網站提供《PyTorch教程10.2之門控循環單元(GRU).pdf》資料免費下載
    發表于 06-05 18:15 ?0次下載
    PyTorch教程10.2之門控<b class='flag-5'>循環</b><b class='flag-5'>單元</b>(GRU)

    python最簡單for循環例子

    Python是種簡單而又強大的編程語言,通過其清晰的語法和豐富的功能庫,我們可以實現各種各樣的任務。其中最基本的語法結構就是for
    的頭像 發表于 11-21 14:53 ?1106次閱讀

    python如何循環代碼

    滿足某個條件才停止循環。以下是使用while循環般語法: while 條件:代碼塊 在代碼塊中,你可以編寫需要重復執行的代碼。循環
    的頭像 發表于 11-23 15:54 ?2711次閱讀

    循環指令loop規定循環次數

    循環指令是計算機編程中非常重要的概念,它允許程序重復執行段代碼塊,使得程序可以更有效地處理大量數據和重復性任務。在本文中,我們將詳盡、詳實、細致地介紹
    的頭像 發表于 02-14 16:10 ?1682次閱讀

    循環神經網絡和遞歸神經網絡的區別

    處理序列數據方面具有顯著的優勢,但它們在結構和工作原理上存在些關鍵的區別。 循環神經網絡(RNN) 1.1 RNN的結構 循環神經網絡
    的頭像 發表于 07-04 14:19 ?927次閱讀

    循環神經網絡和卷積神經網絡的區別

    結構。它們在處理不同類型的數據和解決不同問題時具有各自的優勢和特點。本文將從多個方面比較循環神經網絡和卷積神經網絡的區別。 基本概念 循環神經網絡
    的頭像 發表于 07-04 14:24 ?1304次閱讀

    循環神經網絡的基本原理是什么

    結構具有循環,能夠將前一個時間步的信息傳遞到下一個時間步,從而實現對序列數據的建模。本文將介紹循環神經網絡的基本原理。 RNN的基本結構 1
    的頭像 發表于 07-04 14:26 ?656次閱讀

    循環神經網絡的基本概念

    循環神經網絡的基本概念、循環機制、長短時記憶網絡(LSTM)、門控循環單元(GRU)等方面進行介
    的頭像 發表于 07-04 14:31 ?694次閱讀

    循環神經網絡算法有哪幾種

    循環神經網絡(Recurrent Neural Networks,簡稱RNN)是種適合于處理序列數據的深度學習算法。與傳統的神經網絡不同,
    的頭像 發表于 07-04 14:46 ?545次閱讀

    循環神經網絡算法原理及特點

    )相比,RNN在處理序列數據時具有明顯的優勢。本文將介紹循環神經網絡的原理、特點及應用。 1. 循環神經網絡的原理 1.1 基本概念 循環
    的頭像 發表于 07-04 14:49 ?690次閱讀

    rnn是遞歸神經網絡還是循環神經網絡

    RNN(Recurrent Neural Network)是循環神經網絡,而非遞歸神經網絡循環神經網絡
    的頭像 發表于 07-05 09:52 ?580次閱讀
    主站蜘蛛池模板: 年轻护士女三级| 2017天天干| 日本污污视频| 天天干天天操天天干| 视频在线观看免费| 免费在线黄色网址| 国产亚洲精品久久久久久久软件| 国产呦精品系列在线| 国产成人精品午夜二三区| 91极品女神私人尤物在线播放| 午夜黄网| 亚洲一区二区三区网站| 久久精品视频热| 亚洲三级在线看| 天堂成人| 欧美三级大片在线观看| 久久大伊人| 91九色成人| 奇米影视一区| 在线播放网址| 亚洲春色在线| 伊人久久成人爱综合网| 四虎在线观看一区二区| 日本暴力喉深到呕吐hd| 国内自拍网红在综合图区| 伊人网在线免费视频| 欧美黑人性色黄在线视频| 夜夜夜夜夜夜夜工噜噜噜| 一区二区三区四区视频在线观看| 中文字幕不卡免费高清视频| 特级生活片| 久久精品94精品久久精品| 99久久综合| 美妇乱人伦性| 国产亚洲新品一区二区| 777人体粉嫩u美图| 欧美肥胖女人bbwbbw视频| 日韩dv| 最新天堂| 日本黄色大片免费| www.四虎在线|