在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

集成式電機驅動器和控制器芯片方案

工程師兵營 ? 來源:互聯網 ? 作者:佚名 ? 2018-07-24 09:23 ? 次閱讀

無刷直流 (BLDC) 電機在各種各樣的應用中廣受青睞,如計算機冷卻風扇、磁盤驅動器、無線電動工具、電動自行車以及電唱機轉盤。 隨著價格持續下降,電機將得到甚至更廣泛的應用,對成本最為敏感的應用則另當別論。 然而,隨著需求的增加,人們也越來越多地要求 BLDC 電機運行更平滑、更高效、更安靜。

雖然正弦控制是達到這些目標的最佳方式,但相對于更為傳統的梯形控制技術,這種控制則會增加成本和復雜性。 本文將討論 BLDC 電機控制的基本原理,以及使用正弦控制而不是梯形控制的原因。 本文還將介紹一些現成的商業解決方案,包括集成式電機驅動器控制器芯片等形式,這些方案可用于更加輕松地過渡到正弦控制并加快設計流程。

BLDC 電機基本原理

BLDC 電機通過反向電機設置消除了使用機械換向器的要求;繞組成為定子,永磁體成為轉子的一部分。 繞組通常由使用脈沖寬度調制 (PWM) 控制的六 MOSFET 電橋供電,它們按照控制次序進行轉向,產生旋轉磁場,從而“拖拽”圍繞它的轉子并驅動相連的負載(圖 1)。

BLDC 電機的?PWM 信號供電原理圖

圖 1: BLDC 電機的供電方式是通過使用 PWM 信號順次激勵繞組。 PWM 信號的占空比與驅動電壓成比例。 在本圖中,“U”、“V”和“W”是繞組,“HA”、“HB”和“HC”是位置感應霍爾效應傳感器。 (圖片來源: ON Semiconductor/Fairchild

換向由轉子和定子的相對位置確定,具體則通過霍爾效應傳感器測量,或通過電機轉動時生成的反電動勢 (EMF) 幅度測量(限無傳感器電機)。

目前有三種電子換向控制方案:梯形、正弦和磁場定向控制 (FOC)。 FOC 實現成本高,專用于高端應用,因此本文不做討論。

對于許多應用,梯形控制的 BLDC 電機是最佳解決方案。 這類電機結構緊湊、性能可靠,且價格也在迅速下降,因此尤其適合許多小型電機應用,包括汽車、白色家電和計算機。

此外,梯形技術最容易實現,因此也最受歡迎。 電機每相由直流供電,每 60? 進行換向。 相位驅動為“高”、“低”或保持浮動狀態。

理論上,這樣的系統可產生平滑、恒定扭矩。 實際上,特定相位的電流不可能瞬間由低轉為高。 相反,所導致的上升時間在輸出中生成與轉向定時一致的波紋(圖 2)。

三相 BLDC 電機的電波形原理圖

圖 2: 使用梯形控制的三相 BLDC 電機的電波形。 請注意,發生轉向時每個相位的驅動電流輕微下降。 這會引起電機扭矩中的波紋。 虛線記錄了每個相位中反電動勢的梯形圖,其中過零點與相位的浮動周期中間點重合。 (圖片來源:Texas Instruments)

轉矩波動不是梯形控制 BLDC 電機的唯一缺點。 另一個缺點是電氣和聲學噪聲。 一個重要的噪聲來源就是為每個相位供電的快速切換直流電流。 從電氣角度來說,這種噪聲會加熱繞組并降低效能。 從聲學角度來說,開關頻率及其諧波產生的“嗡嗡”聲音頻率雖然不是很大,但十分刺耳。

(有關 BLDC 電機運行和梯形控制方案的詳細信息,請參閱資料庫文章《如何對無刷直流電機進行供電和控制》。)

實施正弦控制

正弦控制十分復雜,很少有工程師可以僅借用基本原理就實現系統。 一個更好的方法就是利用芯片供應商的知識和 BLDC 電機設計開發套件。 NXP 的 FRDM-KE04Z 就是一個例子。

它利用 Kinetis KE04 ARM? Cortex?-M0 MCU 運行正弦算法。 由于控制電路設計基于一種普通的 BLDC 驅動器芯片,因此進一步減輕了實現難度。 這些設備通常將 PWM 控制和電力電子器件集成到一個芯片,并提供外部 MCU 的接口。 其他設備集成 MCU,僅需一些額外的無源元器件就可以形成完整電路。

正弦替代方式:“鞍形”圖

實踐中極少使用純正弦驅動電壓,因為相對于接地而言,為每個電機端子生成電壓的效率很低。 一個更好的方法就是在相位間生成正弦差分電壓,相位偏移 120? 進行換向。 實現方式是通過使用“鞍形”圖(而不是正弦)改變相對于接地的 PWM 占空比(以及驅動電壓)(圖 3)。 隨后,驅動電機的相電流就遵循相間電壓的純正弦波變化。

實際正弦控制實現圖

圖 3: 實際正弦控制實現不使用純正弦波電壓驅動每個相位。 相反,使用鞍形電壓會在兩個端子之間產生正弦波差分電壓,相位偏移 120? 進行換向。 這樣,給定電壓下的扭矩和速度會更大,效能也得到提升。 (圖片來源:NXP)

鞍形圖方法有兩個優點: 第一,所產生的最大差分電壓要高于純正弦信號所能產生的電壓,因而給定輸入的扭矩和速度也更大。 第二,每個端子 1/3 時間輸出為零,進一步減少了功率級中的開關損耗。

正弦控制方法的一個復雜之處在于:根據形成鞍形電壓輸入所必需的電機角度來精確控制占空比。 這在高速旋轉時甚至變得更加困難。 挑戰主要在于每轉只能精確確定電機位置六次,而轉子的其中一個磁極經過三個霍爾傳感器中的一個。 例如,FRDM-KE04Z 常用的解決方案是將電機角速度乘以 ?T 并假定電機速度恒定,從而估算霍爾傳感器之間的電機角度 (“mtrAngle”)。

然后使用查詢表確定特定角度的 PWM 占空比。 在 FRDM-KE04Z 中,查詢表為電機旋轉的每個角度(實際 384 個增量)提供占空比。

下面的代碼片段說明了 FRDM-KE04Z 如何計算角度(順時針旋轉)1:

deltaAngle = F32Add(deltaAngle,F32Abs(velocityAct));
if (deltaAngle >= DELTANGLE_MAX) //limit deltaAngle range into

{[0,64]

deltaAngle = DELTANGLE_MAX;

}

mtrAngle = HallTableCW[motorPosition];

mtrAngle += (tU16)((deltaAngle) >> 12);

mtrAngle += (tU16)advanceAngle;

if (mtrAngle >= 384)

{

mtrAngle -= 384;

}

計算電機角度后,可使用下列代碼(可訪問查詢表)計算占空比:

dutyCycleU16A = (Frac16)(((Frac16)dutyCycleU16 * (Frac16)SinusoidalWaveTable[mtrAngle]) >> 8);

if (mtrAngle < 128)

{

dutyCycleU16B = (Frac16)(((Frac16)dutyCycleU16 * (Frac16)SinusoidalWaveTable[mtrAngle + 256]) >> 8);

}

else

{

dutyCycleU16B = (Frac16)(((Frac16)dutyCycleU16 * (Frac16)SinusoidalWaveTable[mtrAngle - 128]) >> 8);

}

if (mtrAngle >= 256)

{

dutyCycleU16C = (Frac16)(((Frac16)dutyCycleU16 * (Frac16)SinusoidalWaveTable[mtrAngle -256]) >> 8);

}

else

{

dutyCycleU16C = (Frac16)(((Frac16)dutyCycleU16 * (Frac16)SinusoidalWaveTable[mtrAngle + 128]) >> 8);

}

代碼列表: 所需代碼,用于計算 FRDM-KE04Z 開發套件的電機角度和 PWM 占空比。 (代碼來源: NXP)

此類方法利用了使用鞍形圖的附帶影響。 特別說明:由于特定相位的電壓值在三分之一時間內為零,這段時間不需要查詢,因而需要的處理器資源更少,并允許在應用中使用更普通的低成本 MCU。

這種方法的缺點是啟動階段電機快速加速時,霍爾傳感器之間的電機速度插值很可能不精確。 這會導致扭矩響應不平穩。

針對這一問題,ROHM Semiconductor 的 BD62011FS 風扇電機控制器采用的一種常見解決方案是:以梯形控制模式啟動電機,在達到特定速度(通常 5 - 100 Hz)后切換到正弦控制,此時插值的精確度更高。

Rohm 的設備主要針對配備霍爾傳感器的 BLDC 電機的控制。 芯片采用高壓側和低壓側 MOSFET 的 PWM 控制和正弦換向邏輯。 它可在 10 到 18 V 輸入范圍內運行,并提供介于 2.1 和 5.4 V(最高 1 W)的輸出范圍。 目標應用包括空調、水泵和白色家電。

另一個設計挑戰是給定相位驅動電壓和產生的正弦波電流之間的相位延遲,通常發生于非補償型BLDC 電機。 電機可正常運行,但效能將降低,這會首先挫敗實現正弦控制方案的目標。 這種效能低下的原因不是驅動電壓和相位電流之間的相位延遲,而是相位電流和正弦反電動勢之間的相位延遲。

幸運的是,許多驅動芯片,包括 ON Semiconductor 的 LV8811G 功率 MOSFET 驅動器,允許設計人員在正弦驅動電流中引入超前相角,從而確保其峰值與反電動勢的峰值一致。 超前相角通常設為隨輸入電壓線性增加,而電壓決定電機速度(圖 4)。

無補償正弦控制 BLDC 電機示意圖

圖 4: 在非補償正弦控制 BLDC 電機中,相位電流延遲反電動勢,造成了效能低下(上圖)。 許多驅動器芯片包括超前相角,這允許設計人員卻定電流相位,使其與反電動勢保持一致(下圖)。 (圖片來源: ON Semiconductor/Fairchild)

LV8811G 是三相 BLDC 電機驅動器,由單個霍爾傳感器控制并采用正弦控制。 直接 PWM 脈沖輸入或直流電壓輸入都可用于控制電機轉速。

使用 LV118811G 時,設計人員可通過引腳 PH1 和 PH2 上的分壓電阻器來設置初始條件:相角開始超前的速度和超前相角斜坡的梯度。 之后芯片的內部邏輯根據預定公式確定給定速度的超前相角。

無傳感器 BLDC 正弦控制

正弦控制還可通過無傳感器的 BLDC 電機實現。 這些電機的運行方式與使用霍爾效應傳感器的電機相似,除了位置信息是通過測量反電動勢獲得。 (有關詳細信息,請參閱資料庫文章《通過反電動勢控制無傳感器的 BLDC 電機》。)

例如,Texas Instruments 的 DRV10983 就是設計用于無傳感器的 BLDC 電機的正弦控制。 芯片集成電力電子器件,可以連接外部 MCU 并提供高達 2 A 的連續驅動電流。正弦控制通過使用公司的專有控制方案來實現。

在該方案中,換向控制算法連續測量電機相電流并定期測量供電電壓。 然后,設備使用該信息計算反電動勢和電機位置。 電機速度由單位時間內一個相位的反電動勢的過零次數確定。 芯片還允許超前相角,以調整相電流和反電動勢,從而實現最大效能。

DRV10983 是專門設計用于成本敏感、低噪聲、低外部元器件計數的應用(圖 5)。

Texas Instruments 的 DRV10983 原理圖

圖 5: Texas Instruments 的 DRV10983 使設計人員能夠創建一個正弦控制的 BLDC 電機系統,其中包括低成本的 MCU 和一小部分的無源元器件。 (示意圖使用 Digi-Key Scheme-it? 繪制,原圖來自 Texas Instruments)

總結

BLDC 電機由于性能和可靠性的優勢,正逐漸成為傳統有刷型電機的替代產品。 對于許多應用,梯形控制可滿足使用預期,但如果設計人員的任務是提高效能、減少電氣和聲學噪聲并提高扭矩傳遞,則應考慮正弦控制。

雖然正弦控制增加了復雜度和成本,但開發工具、功能性 MCU 以及集成驅動器 IC 已大大簡化了設計流程,使正弦控制更加實用簡單。 不僅如此,開發工具的靈活性和驅動器 IC 的適應性使設計人員能夠精調應用的電機,并更多關注產品差異化方面。

參考資料

  1. Sinusoidal Control of BLDCM with Hall Sensors Based on FRDM-KE04Z and Tower Board,” Liu Zhen, Freescale Semiconductor Application Note (AN4869), March 2014.
  2. Development of Sinusoidal BLDC Drive with Hall Sensors,” Joon Sung Parka et al, Korea Electronics Technology Institute, 2016.

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2552

    文章

    51302

    瀏覽量

    755244
  • 無刷直流電機

    關注

    61

    文章

    690

    瀏覽量

    46241
  • FOC
    FOC
    +關注

    關注

    20

    文章

    324

    瀏覽量

    42894
收藏 人收藏

    評論

    相關推薦

    驅動器的工作原理 驅動器電機的區別

    驅動器接收來自控制器的輸入信號,這些信號可能是電壓、電流或數字信號,表示所需的速度或位置。 信號轉換 :驅動器內部的電路將這些輸入信號轉換為電機
    的頭像 發表于 12-19 16:20 ?643次閱讀

    ST7789V2單芯片控制器/驅動器英文手冊

    電子發燒友網站提供《ST7789V2單芯片控制器/驅動器英文手冊.pdf》資料免費下載
    發表于 11-24 15:42 ?11次下載

    伺服驅動器與傳統電機的區別

    驅動器: 伺服驅動器是一種高精度的電機控制系統,它通過精確控制電機的轉速、位置和力矩來實現對機械
    的頭像 發表于 11-04 15:22 ?354次閱讀

    PAC智能電機控制集成柵極驅動器的MCU應用方案

    無刷直流電機驅動電路主要有三大部分:控制器、柵極驅動器(即我們常說的預驅),以及功率 MOSFET/IGBT。本文介紹了PAC智能電機
    的頭像 發表于 10-25 15:11 ?637次閱讀
    PAC智能<b class='flag-5'>電機</b><b class='flag-5'>控制</b><b class='flag-5'>集成</b>柵極<b class='flag-5'>驅動器</b>的MCU應用<b class='flag-5'>方案</b>

    步進電機驅動器的主要驅動方式有哪些?簡單介紹

    步進電機驅動器的主要驅動方式有以下幾種: 脈沖驅動方式 脈沖驅動方式是步進電機
    的頭像 發表于 10-24 13:43 ?403次閱讀

    TMC5130A-TA電機控制器驅動器IC

    卓聯微TMC5130A-TA電機控制器驅動器IC電機控制器驅動器IC概述TMC5130A-TA
    的頭像 發表于 06-26 08:28 ?794次閱讀
    TMC5130A-TA<b class='flag-5'>電機</b><b class='flag-5'>控制器</b>和<b class='flag-5'>驅動器</b>IC

    步進電機控制器電路圖 步進電機控制器的分類及其特點

      步進電機控制器是一種專門用于控制步進電機的設備,它通過發出脈沖信號來驅動步進電機,實現對
    的頭像 發表于 06-24 17:12 ?3526次閱讀
    步進<b class='flag-5'>電機</b><b class='flag-5'>控制器</b>電路圖 步進<b class='flag-5'>電機</b><b class='flag-5'>控制器</b>的分類及其特點

    電機控制器電機驅動器有什么區別

      電機控制器電機驅動器電機控制系統中各自扮演著關鍵角色,盡管它們共同作用于
    的頭像 發表于 06-19 11:49 ?2465次閱讀

    伺服驅動器對伺服電機控制要求

    伺服驅動器對伺服電機控制要求是一個復雜而深入的話題。以下是關于伺服驅動器對伺服電機控制要求的概
    的頭像 發表于 06-14 15:24 ?867次閱讀

    柵極驅動器芯片的原理是什么

    柵極驅動器芯片的原理是什么 柵極驅動器芯片是一種用于控制功率電子器件(如IGBT、MOSFET等)柵極電壓的
    的頭像 發表于 06-10 17:23 ?1694次閱讀

    集成FET驅動器和線性調節控制器的可擴展兩相同步降壓控制器LM3754數據表

    電子發燒友網站提供《集成FET驅動器和線性調節控制器的可擴展兩相同步降壓控制器LM3754數據表.pdf》資料免費下載
    發表于 04-19 10:30 ?0次下載
    <b class='flag-5'>集成</b>FET<b class='flag-5'>驅動器</b>和線性調節<b class='flag-5'>器</b><b class='flag-5'>控制器</b>的可擴展兩相同步降壓<b class='flag-5'>控制器</b>LM3754數據表

    基于Infineon IMD70xA系列推出高度集成的MOTIX?電機控制器方案

    MOTIX? 電機控制器 IMD700A 是英飛凌的完全可編程電機控制器,將XMC1404 微控制器與6EDL7141 三相柵極
    的頭像 發表于 04-12 17:10 ?595次閱讀
    基于Infineon IMD70xA系列推出高度<b class='flag-5'>集成</b>的MOTIX?<b class='flag-5'>電機</b><b class='flag-5'>控制器</b><b class='flag-5'>方案</b>

    Microchip推出基于dsPIC? DSC的新型集成電機驅動器控制器、柵極驅動器和通信整合到單個器件

    為了在空間受限的應用中實現高效、實時的嵌入電機控制系統,MicrochipTechnologyInc.(微芯科技公司)推出基于dsPIC數字信號控制器(DSC)的新型
    的頭像 發表于 03-08 08:22 ?481次閱讀
    Microchip推出基于dsPIC? DSC的新型<b class='flag-5'>集成</b><b class='flag-5'>電機</b><b class='flag-5'>驅動器</b>將<b class='flag-5'>控制器</b>、柵極<b class='flag-5'>驅動器</b>和通信整合到單個器件

    Microchip推出基于dsPIC數字信號控制器的新型集成電機驅動器系列

    為了在空間受限的應用中實現高效、實時的嵌入電機控制系統,Microchip Technology Inc.(微芯科技公司)推出基于dsPIC數字信號控制器(DSC)的新型
    的頭像 發表于 02-27 16:03 ?971次閱讀
    Microchip推出基于dsPIC數字信號<b class='flag-5'>控制器</b>的新型<b class='flag-5'>集成</b><b class='flag-5'>電機</b><b class='flag-5'>驅動器</b>系列

    伺服電機驅動器設置參數教程

    伺服電機驅動器是現代工業控制領域中廣泛應用的一種設備。通過合理設置參數,可以實現電機的高精度定位、速度控制和力矩
    的頭像 發表于 01-25 11:36 ?7555次閱讀
    主站蜘蛛池模板: 婷婷开心激情网| 四虎国产永久在线观看| 淫五月| 色yeye在线观看| 在线 | 一区二区三区| 亚洲一区免费观看| 不卡视频一区| 午夜理伦| 日本成人视屏| 人人免费操| 日本在线网址| 极品丰满翘臀后进啪啪| 干干干日日日| 国产性videostv另类极品| 亚洲 欧洲 日产 韩国在线| 免费观看交性大片| 香蕉婷婷| 免费在线黄色网| www一级毛片| 日韩一级黄色录像| 2021久久精品免费观看| 亚洲一级毛片中文字幕| 伊人网亚洲| 日本老师xxxxxxxxx79| 国产综合久久久久影院| 六月婷婷网| 国产福利网站| 天天操天天摸天天射| se色成人亚洲综合| 欧美性色xo影院69| 四虎国产精品视频免费看 | 久久国产免费观看| 免费视频大全| 亚洲伊人久久网| 亚洲图色视频| 日本黄色生活片| www色午夜| 国产亚洲欧美成人久久片| 午夜精品久久久久久| 手机天堂网| 大尺度免费高清在线观看视频|