在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

【連載】深度學習筆記1:利用numpy從零搭建一個神經網絡

人工智能實訓營 ? 2018-08-06 17:36 ? 次閱讀


很多人說深度學習就是個黑箱子,把圖像預處理之后丟進 tensorflow 就能出來預測結果,簡單有效又省時省力。但正如我在上一篇推送中所說,如果你已是一名功力純厚的深度學習工程師,這么做當然沒問題。但我想大多數人也和我一樣,都是走在學習深度學習的路上,一上來就上框架并沒有什么特別不妥之處,但總歸是對你理解深度學習的黑箱機制是了無裨益的。所以,我建議在學習深度學習的路上,從最簡單的感知機開始寫起,一步一步捋清神經網絡的結構,以至于激活函數怎么寫、采用何種損失函數、前向傳播怎么寫、后向傳播又怎么寫,權值如何迭代更新,都需要你自己去實現。若在一開始就直接調用框架,小的 demo 可以跑起來,糊弄一時,看起來就像是鳩摩智在內力未到的情形下強行練習少林寺的 72 絕技,最后走火入魔。

無論你是在看那本深度學習的書,還是在學習 Adrew NG 的 deeplearningai,或者是在cs231n ,對神經網絡的基本理論了如指掌的你一定想親手用 python 來實現它。在不借助任何深度學習框架的基礎上,利用 python 的科學計算庫 numpy 由最初級的感知機開始,從零搭建一個神經網絡模型。

640?wx_fmt=png

感知機結構


對于感知機模型、神經網絡理論這里就不再敘述,相信在精通深度學習的你對此一定很熟練了。至于對于神經網絡中的輸入層、隱藏層、輸出層、權重與偏置、激活函數、損失函數、前向傳播、反向傳播、權值更新、梯度下降、微積分中的鏈式求導、方向梯度等概念,我也假設你很熟練了。所以,接下來就讓我們從零搭建一個最初級的神經網絡模型。

在寫代碼前,必須先捋一下思路,咱們先要什么,然后再寫什么,你心中必須有個數。要從零開始寫一個神經網絡,通常的方法是:

  • 定義網絡結構(指定輸出層、隱藏層、輸出層的大小)

  • 初始化模型參數

  • 循環操作:執行前向傳播/計算損失/執行后向傳播/權值更新


有了上面這個思路,我們就可以開始寫了。當然了,本節是寫一個最簡單的感知機模型,所以網絡結構就無需特別定義。首先來定義我們的激活函數,激活函數有很多種,這里我們使用大名鼎鼎的 sigmoid 函數:


直接利用 numpy 進行定義 sigmoid()

import numpy as np
def sigmoid(x): return 1 / (1 + np.exp(-x))

在無需定義網絡結構的情形下,第二步我們就可以直接對模型參數進行初始化。模型參數主要包括權值 w 和偏置 b ,這也是神經網絡學習過程要學的東西。繼續利用 numpy 對參數進行初始化:

definitilize_with_zeros(dim):
w=np.zeros((dim,1))
b=0.0
#assert(w.shape==(dim,1))
#assert(isinstance(b,float)orisinstance(b,int))
returnw,b

接下來就要進入模型的主體部分,執行最后一步那個大的循環操作,這個循環中包括前向傳播和計算損失、反向傳播和權值更新。這也是神經網絡訓練過程中每一次需要迭代的部分。這里簡單說一下,很多初學者容易被這兩個概念繞住,前向傳播簡單而言就是計算預測 y 的過程,而后向傳播則是根據預測值和實際值之間的誤差不斷往回推更新權值和偏置的過程。

640?wx_fmt=jpeg

前后傳播與后向傳播

下面我們來定義一個大的前向傳播函數,預測值y為模型從輸入到經過激活函數處理后的輸出的結果。損失函數我們采用交叉熵損失,利用 numpy 定義如下函數:

def propagate(w, b, X, Y):
  m = X.shape[1]
  A = sigmoid(np.dot(w.T, X) + b)
  cost = -1/m * np.sum(Y*np.log(A) + (1-Y)*np.log(1-A))

  dw = np.dot(X, (A-Y).T)/m
  db = np.sum(A-Y)/m  
assert(dw.shape == w.shape)
assert(db.dtype == float) cost = np.squeeze(cost)
assert(cost.shape == ()) grads = { 'dw': dw,
'db': db }

return grads, cost

在上面的前向傳播函數中,我們先是通過激活函數直接表示了感知機輸出的預測值,然后通過定義的交叉熵損失函數計算了損失,最后根據損失函數計算了權值 w 和偏置 b的梯度,將參數梯度結果以字典和損失一起作為函數的輸出進行返回。這就是前向傳播的編寫思路。

接下來循環操作的第二步就是進行反向傳播操作,計算每一步的當前損失根據損失對權值進行更新。同樣定義一個函數 backward_propagation :

def backward_propagation(w, b, X, Y, num_iterations, learning_rate, print_cost=False):
  cost = []  
for i in range(num_iterations): grad, cost = propagate(w, b, X, Y) dw = grad['dw'] db = grad['db'] w = w - learing_rate * dw b = b - learning_rate * db
if i % 100 == 0: cost.append(cost)
if print_cost and i % 100 == 0: print("cost after iteration %i: %f" %(i, cost)) params
= {"dw": w,
"db": b } grads = {"dw": dw,
"db": db }

return params, grads, costs

在上述函數中,我們先是建立了一個損失列表容器,然后將前一步定義的前向傳播函數放進去執行迭代操作,計算每一步的當前損失和梯度,利用梯度下降法對權值進行更新,并用字典封裝迭代結束時的參數和梯度進行返回。

如上所示,一個簡單的神經網絡模型(感知機)就搭建起來了。通常模型建好之后我們還需要對測試數據進行預測,所以我們也定義一個預測函數 predict,將模型的概率輸出轉化為0/1值。

def predict(w, b, X):
  m = X.shape[1]
  Y_prediction = np.zeros((1, m))
  w = w.reshape(X.shape[0], 1)

  A = sigmoid(np.dot(w.T, X)+b)  
for i in range(A.shape[1]):
if A[:, i] > 0.5: Y_prediction[:, i] = 1 else: Y_prediction[:, i] = 0 assert(Y_prediction.shape == (1, m))
return Y_prediction

到這里整個模型算是寫完了,但是我們定義了這么多函數,調用起來太麻煩,所以致力于要寫出 pythonic的代碼的你們肯定想對這些函數進行一下簡單的封裝:

def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):  # initialize parameters with zeros (≈ 1 line of code)
  w, b = initialize_with_zeros(X_train.shape[0])  # Gradient descent (≈ 1 line of code)
  parameters, grads, costs = backwize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)  # Retrieve parameters w and b from dictionary "parameters"
  w = parameters["w"]
  b = parameters["b"]  # Predict test/train set examples (≈ 2 lines of code)
  Y_prediction_train = predict(w, b, X_train)
  Y_prediction_test = predict(w, b, X_test)  # Print train/test Errors
  print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
  print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))

  d = {"costs": costs,    
"Y_prediction_test": Y_prediction_test, "Y_prediction_train" : Y_prediction_train, "w" : w, "b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d

如此這般一個簡易的神經網絡就被你用 numpy就寫出來了。現在社會浮躁,很多人學習都沒有耐心,總是抱著鳩摩智的心態想要一步登天。學習機器學習和深度學習方法很多,但我相信,只有對基本的算法原理每一步都捋清楚,每一步都用最基礎的庫去實現,你成為一名優秀的機器學習工程師只是時間問題。加油吧各位!




聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4774

    瀏覽量

    100899
  • 人工智能
    +關注

    關注

    1792

    文章

    47436

    瀏覽量

    238979
  • 機器學習
    +關注

    關注

    66

    文章

    8425

    瀏覽量

    132772
  • 深度學習
    +關注

    關注

    73

    文章

    5508

    瀏覽量

    121295
收藏 人收藏

    評論

    相關推薦

    深度學習中的卷積神經網絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經網絡作為深度學習
    的頭像 發表于 11-15 14:52 ?367次閱讀

    使用NumPy實現前饋神經網絡

    要使用NumPy實現前饋神經網絡(Feedforward Neural Network),我們需要從基礎開始構建,包括初始化網絡參數、定
    的頭像 發表于 07-11 16:30 ?1667次閱讀

    pytorch中有神經網絡模型嗎

    當然,PyTorch是廣泛使用的深度學習框架,它提供了許多預訓練的神經網絡模型。 PyTorch中的
    的頭像 發表于 07-11 09:59 ?725次閱讀

    簡單認識深度神經網絡

    深度神經網絡(Deep Neural Networks, DNNs)作為機器學習領域中的種重要技術,特別是在深度
    的頭像 發表于 07-10 18:23 ?1059次閱讀

    循環神經網絡和卷積神經網絡的區別

    循環神經網絡(Recurrent Neural Network,RNN)和卷積神經網絡(Convolutional Neural Network,CNN)是深度學習領域中兩種非常重要的
    的頭像 發表于 07-04 14:24 ?1352次閱讀

    深度神經網絡與基本神經網絡的區別

    在探討深度神經網絡(Deep Neural Networks, DNNs)與基本神經網絡(通常指傳統神經網絡或前向神經網絡)的區別時,我們需
    的頭像 發表于 07-04 13:20 ?977次閱讀

    深度神經網絡的設計方法

    深度神經網絡(Deep Neural Networks, DNNs)作為人工智能領域的重要技術之,通過模擬人腦神經元之間的連接,實現了對復雜數據的自主
    的頭像 發表于 07-04 13:13 ?492次閱讀

    bp神經網絡深度神經網絡

    BP神經網絡(Backpropagation Neural Network)是種常見的前饋神經網絡,它使用反向傳播算法來訓練網絡。雖然BP神經網絡
    的頭像 發表于 07-03 10:14 ?879次閱讀

    卷積神經網絡訓練的是什么

    、訓練過程以及應用場景。 1. 卷積神經網絡的基本概念 1.1 卷積神經網絡的定義 卷積神經網絡種前饋
    的頭像 發表于 07-03 09:15 ?440次閱讀

    深度學習與卷積神經網絡的應用

    隨著人工智能技術的飛速發展,深度學習和卷積神經網絡(Convolutional Neural Network, CNN)作為其中的重要分支,已經在多個領域取得了顯著的應用成果。圖像識
    的頭像 發表于 07-02 18:19 ?932次閱讀

    卷積神經網絡的基本結構及其功能

    。 引言 深度學習是機器學習分支,它通過模擬人腦神經網絡的結構和功能,實現對數據的自動
    的頭像 發表于 07-02 14:45 ?2358次閱讀

    深度神經網絡模型有哪些

    深度神經網絡(Deep Neural Networks,DNNs)是類具有多個隱藏層的神經網絡,它們在許多領域取得了顯著的成功,如計算機視覺、自然語言處理、語音識別等。以下是
    的頭像 發表于 07-02 10:00 ?1515次閱讀

    利用深度循環神經網絡對心電圖降噪

    曼濾波。因此,通過這種方式訓 練網絡,無法獲得比卡爾曼濾波本身更好的 性能。本文介紹了利用深度遞歸神經網絡 (DRNN)對 ECG 信號
    發表于 05-15 14:42

    利用神經網絡對腦電圖(EEG)降噪

    數據與干凈的EEG數據構成訓練數據,并且分成訓練、驗證和測試數據集。 繪制有噪聲EEG數據與干凈的EEG數據 顯然,傳統的任何算法很難將EEG數據噪聲中濾出來。 定義神經網絡結構,之所以選擇長短期記憶
    發表于 04-30 20:40

    詳解深度學習神經網絡與卷積神經網絡的應用

    在如今的網絡時代,錯綜復雜的大數據和網絡環境,讓傳統信息處理理論、人工智能與人工神經網絡都面臨巨大的挑戰。近些年,深度學習逐漸走進人們的視線
    的頭像 發表于 01-11 10:51 ?2212次閱讀
    詳解<b class='flag-5'>深度</b><b class='flag-5'>學習</b>、<b class='flag-5'>神經網絡</b>與卷積<b class='flag-5'>神經網絡</b>的應用
    主站蜘蛛池模板: xxx性欧美在线| 222aaa免费| 天天射天天操天天| 五月天婷婷丁香| 天天爽天天| 国产小视频免费| 色爱综合区五月小说| 精品一区二区三区免费毛片爱 | 国产在线观看色| 成人伊人| 天天拍夜夜操| 国产午夜精品理论片在线 | 国产精品美女免费视频大全| 1024人成网站色| 人人爱操| 人人澡人人澡人人看青草| 视频亚洲一区| 亚洲伊人久久大香线蕉影院 | 伊人久久综合网亚洲| 色综久久| 黄色毛片网| 美国色综合| 国产aaaaaaa毛片| 天天天干干干| 在线黄色网| 中文字幕网资源站永久资源| 四虎永久精品免费网址大全| 一色屋成人免费精品网| 色综合久久网| 国产手机在线| 国语自产拍在线观看7m| 99青草青草久热精品视频| 欧美一级黄色片在线观看| 欧美肥胖女人bbwbbw视频| 1024手机看片你懂得的 日韩欧美| 男女在线观看视频| 色网站免费在线观看| 国产一区二区三区毛片| 偷拍福利视频| 丁香综合激情| 五色网|