在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

數據庫高可用容災方案設計和實現

lviY_AI_shequ ? 來源:未知 ? 作者:李倩 ? 2018-08-29 16:04 ? 次閱讀

現如今已經進入大數據時代,各種系統、應用、活動所產生的數據浩如煙海,數據不再僅僅是企業存儲的信息,而是成為可以從中獲取巨大商業價值的企業戰略資產。這樣背景下,如何存儲海量復雜的數據、從紛繁錯綜的數據中找到真正有價值的數據,是大數據時代企業面臨的難題。

8月18日的“UCan下午茶”杭州站,來自UCloud、網易、華為的五位技術專家,從數據庫高可用容災方案設計和實現、新一代公有云分布式數據庫、基于Impala平臺打造交互查詢系統等不同維度出發,分享了他們在大數據查詢、分析、存儲開發過程中遇到的“困惑”與解決方案。

數據庫高可用容災方案設計和實現

高可用容災是搭建數據庫服務的一個重要考量特性,搭建高可用數據庫服務需要解決諸多問題,保證最終的容災效果。UCloud云數據庫產品UDB在研發演進過程中,根據用戶的需要不斷完善和演進,形成了一套完善的高可用架構體系。

UCloud資深存儲研發工程師丁順從高可用數據庫概述、典型的高可用架構分析以及高可用數據庫自動化運維等角度,講述了如何設計和運營一套完善的數據庫高可用架構,保證在出現異常時能夠及時恢復數據庫服務。

高可用數據庫由一系列的數據庫構成了總的系統,在任何時刻至少有一個節點可以接受客戶端請求,提供數據庫服務。大多數的高可用架構有一個主節點處理主要請求,還有若干備用節點,當主節點不能提供服務時,備節點成為主節點繼續提供服務,這樣可以保證整個系統的可用和穩定。

業界典型的高可用架構可以劃分為四種:第一種,共享存儲方案;第二種,操作系統實時數據塊復制;第三種,數據庫級別的主從復制;第三,高可用數據庫集群。每種數據同步方式可以衍生出不同的架構。

第一種,共享存儲。共享存儲是指若干DB服務使用同一份存儲,一個主DB,其他的為備用DB,若主服務崩潰,則系統啟動備用DB,成為新的主DB,繼續提供服務。一般共享存儲采用比較多的是SAN/NAS方案,這種方案的優點是沒有數據同步的問題,缺點是對網絡性能要求比較高。

第二種,操作系統實時數據塊復制。這種方案的典型場景是DRBD。如下圖所示,左邊數據庫寫入數據以后立即同步到右邊的存儲設備當中。如果左邊數據庫崩潰,系統直接將右邊的數據庫存儲設備激活,完成數據庫的容災切換。這個方案同樣有一些問題,如系統只能有一個數據副本提供服務,無法實現讀寫分離;另外,系統崩潰后需要的容災恢復時間較長。

第三種,數據庫主從復制。這種方案是較經典的數據同步模式,系統采用一個主庫和多個從庫,主庫同步數據庫日志到各個從庫,從庫各自回放日志。它的好處是一個主庫可以連接多個從庫,能很方便地實現讀寫分離,同時,因為每個備庫都在啟動當中,所以備庫當中的數據基本上都是熱數據,容災切換也非常快。

第四種,數據庫高可用集群。前面三種是通過復制日志的模式實現高可用,第四種方案是基于一致性算法來做數據同步。數據庫提供一種多節點的一致性同步機制,然后利用該機制構建多節點同步集群,這是業界近年來比較流行的高可用集群的方案。

UCloud綜合了原生MySQL兼容,不同版本、不同應用場的覆蓋等多種因素,最終選擇采用基于數據庫主從復制的方式實現高可用架構,并在原架構基礎上,使用雙主架構、半同步復制、采用GTID等措施進行系列優化,保證數據一致性的同時,實現日志的自動尋址。

自動化運維是高可用數據庫當中的難點,UDB在日常例行巡檢之外,也會定期做容災演練,查看在不同場景下數據是否丟失、是否保持一致性等,同時設置記錄日志、告警系統等等,以便于第一時間發現問題,并追溯問題的根源,找出最佳解決方案。

新一代公有云分布式數據庫UCloud Exodus

公有云2.0時代,云數據庫新產品不斷涌現。諸如AWS Aurora、阿里云PolarDB等,UCloud在采用最新軟硬件和分布式技術改造傳統數據庫的工作中,也在思考除了分布式數據庫所要求的更大和更快之外,是否還有其他更重要的用戶價值?UCloud資深數據庫研發工程師劉堅君,現場講解了UCloud對于新一代公有云分布式數據庫的思考與設計。

劉堅君首先從1.0時代存在的問題入手,他認為1.0時代云數據庫帶來了三方面價值:彈性、故障救援、知識復用。但它同樣面臨三大難以解決的問題:容量和性能、租用成本、運營成本。

到2.0時代,解決上述三個問題的思路是計算和讀寫分離。通過計算和讀寫分離,將傳統數據庫的計算層和存儲層拆開,各自獨立擴展和演進。這樣做的好處是:1.提供更大的容量和讀寫性能;2.按需擴容和付費;3.優化運營成本并降低運營風險。業界已推出的2.0云數據庫(如Aurora、PolarDB等),均采用計算和存儲分離的架構。

UCloud Exodus的產品和技術理念則更進一步:計算和存儲分離后,存儲層將完全復用云平臺的高性能分布式存儲(如UCloud UDisk、阿里云盤古等),而Exodus則專注于構建一款數據庫內核,去適配主流公有云和私有云廠商發布的高性能分布式存儲產品。Exodus的這種產品架構,稱之為Shared-ALL-DISK架構。

Shared-ALL-DISK架構的優點明顯,在提供云數據庫2.0創新功能的同時,賦予用戶業務自由遷徙的能力,不被某個云平臺綁架,同時能夠連接上下游的軟硬件廠商,共建Exodus數據庫生態。

更為重要的是,Exodus將最終將開源,UCloud會將核心系統的每一行源碼開放,賦予用戶深入了解和優化Exodus的能力。并建設開源社區,吸收全行業的優化成果,共同改進和完善Exodus。

基于Impala平臺打造交互查詢系統

在數據分析當中,因為數據基數龐大、關系模型復雜、響應時間要求高等特性,數據之間的交互查詢就顯得尤為重要。來自網易的大數據技術專家蔣鴻翔現場從交互式查詢特點著手,深入淺出講解了Impala架構、原理,以及網易對Impala的改進思路和使用場景。

Impala是Cloudera公司主導開發的新型查詢系統,它提供SQL語義,能查詢存儲在Hadoop的HDFS和HBase中的PB級大數據。已有的Hive系統雖然也提供了SQL語義,但由于Hive底層執行使用的是MapReduce引擎,仍然是一個批處理過程,難以滿足查詢的交互性。相比之下,Impala能夠很快速的實現數據查詢。下圖是一個Impala的架構圖。

Impala擁有元數據緩存、MPP并行計算、支持LLVM與JIT以及支持HDFS本地讀、算子下推等特性。但它也有一些缺陷,如服務單點、Web信息無法持久化、資源隔離并不精確、負載均衡需要外部支持等。

網易針對上述不足之處,在原有的Impala查詢系統下,進行了系列改進優化:

基于ZK的Loadbalance。原始的Impala負載均衡需要外部支持,為此網易基于ZK做了一個Loadbalance方案;

管理服務器。主要為了解決當某一個節點掛掉時數據丟失的問題,管理服務器會將所有的狀態信息搜集進來,后續如果做分析都可以通過關聯的服務器查詢;

細粒度權限和代理;

Json格式;

兼容Ranger權限管理;

批量元數據刷新;

元數據同步;

元數據過濾;

對接ElasticSearch查詢。

據蔣鴻翔介紹,改造后的交互查詢系統,已經成功應用于網易數據科學中心的一站式大數據平臺自助查詢系統上。同時,數據分析中心的一站式報表系統底層,也搭載在Impala上。相信未來,基于Impala的查詢系統將會應用于更多不同的場景。

UCloud分布式KV存儲系統

分布式KV存儲系統在互聯網公司中扮演著重要角色,各類上層業務對于KV存儲系統的高可用性、可擴展性和數據一致性都有著很高的要求。UCloud存儲部門在迭代升級分布式Redis架構的同時,也一直致力于研發基于硬盤存儲的大容量分布式KV系統。來自UCloud的技術專家王仆,著重介紹了UCloud在大容量分布式KV系統設計方面的經驗,以及應對線上業務高性能、高容量要求的系統架構設計思路。

下圖為UCloud分布式KV存儲系統架構,底層為多個Storage,每一個Storage有三個節點,這三個節點需要放在不同的物理機上,防止一臺機器宕機后系統不可用;標紅框的屬于Master節點,Master節點通過日志同步的方式,同步到層節點,整個數據的請求從Proxy進入。

整個系統是有中心節點的系統,路由管理由Master來管理,Master通過每個機器上的Host管理Storage節點,由Zookeeper確定誰是主誰是從,因此,一些管理方面的請求都是直接連接到Master上的,包括創建、刪除和控制臺方面的功能等。

在測試過程中也發現了一些性能方面的問題,如采用的部分Raft協議是單Raft,設計之初并沒有實現并行Raft功能,因此數據同步較慢;其次,請求是通過代理的方式實現,代理的延遲會比直接訪問的延遲更高,后期,會考慮提供一些客戶端的SDK,讓請求可以跳過代理,減少一次網絡交互。

在KV系統的后續優化上,王仆介紹到,為了能夠將存儲系統應用于更多不同的業務場景,未來會考慮更高的通用性,適配多種的存儲引擎;另外,因為Redis比較流行,系統設計之初主要是支持Redis,但是業界還有一些其他協議,這時候需要特殊的轉化流程,未來希望做成一個支持各種協議的通用結構化存儲系統,適配其他不同協議。

實時流計算技術及其應用

隨著Flink/Spark Streaming的大受歡迎,實時流計算開始為人熟知,進入大眾視野。流計算在物聯網行業、車聯網、智慧城市等行業快速落地,亦創造出越來越多的價值。來自華為的架構師時金魁,現場分享了實時流計算的一些技術方案和落地應用。

在傳統的數據處理流程中,總是先收集數據,然后將數據放到DB中。當人們需要的時候通過DB對數據做query,得到答案或進行相關的處理。這個流程看起來雖然合理,但是結果卻非常的緊湊,尤其是對于一些實時搜索應用環境中的某些具體問題,類似于MapReduce方式的離線處理并不能很好地解決問題。這就引出了一種新的數據計算結構---流計算方式。它可以很好地對大規模流動數據在不斷變化的運動過程中實時地進行分析,捕捉到可能有用的信息,并把結果發送到下一計算節點。

目前,業界開源的流計算框架很多,最早有Storm、Heron,后來還有Akka,Beam,以及現在的Kafka等等。在諸多的開源框架中,時金魁認為,Flink是最恰當的流計算框架,Spark Streaming則是最有潛力的流計算框架,但這兩個框架在落地應用中都有各自的優缺點。

華為根據Flink與Spark框架各自的特點,摒棄其劣勢,設計開發出一款全新的實時流計算服務Cloud Stream Service(簡稱CS)。CS采用Apache Flink的Dataflow模型,實現完全的實時計算,同時,采用在線SQL編輯平臺編寫Stream SQL,定義數據流入、數據處理、數據流出,用戶無需關心計算集群, 無需學習編程技能,降低流數據分析門檻。下圖為華為的實時流計算服務概覽圖。

據介紹,CS聚焦于互聯網和物聯網場景,適用于實時性要求高、吞吐量大的業務場景。主要應用在互聯網行業中小企業、物聯網、車聯網、金融反欺詐等多種行業應用場景,如互聯網汽車、日志在線分析、在線機器學習、在線圖計算、在線推薦算法應用等。

總結

雖然說開源軟件因為其強大的成本優勢而擁有極其強大的力量,數據庫、云計算廠商仍會嘗試推出性能、穩定性、維護服務等指標上更加強大的產品與之進行差異化競爭,并同時參與開源社區,借力開源軟件來豐富自己的產品線、提升自己的競爭力,并通過更多的高附加值服務來滿足部分消費者需求。

總的來看,未來的大數據分析技術、存儲將會變得越來越成熟、越來越便宜、越來越易用,相應的,用戶將會更容易、更方便地從自己的大數據中挖掘出有價值的商業信息。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 數據庫
    +關注

    關注

    7

    文章

    3834

    瀏覽量

    64539
  • 大數據
    +關注

    關注

    64

    文章

    8899

    瀏覽量

    137574

原文標題:企業該如何做大數據的分析挖掘?這里有一份參考指南

文章出處:【微信號:AI_shequ,微信公眾號:人工智能愛好者社區】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    MySQL數據庫的安裝

    MySQL數據庫的安裝 【一】各種數據庫的端口 MySQL :3306 Redis :6379 MongoDB :27017 Django :8000 flask :5000 【二】MySQL 介紹
    的頭像 發表于 01-14 11:25 ?53次閱讀
    MySQL<b class='flag-5'>數據庫</b>的安裝

    數據庫是哪種數據庫類型?

    數據庫是一種部署在虛擬計算環境中的數據庫,它融合了云計算的彈性和可擴展性,為用戶提供高效、靈活的數據庫服務。云數據庫主要分為兩大類:關系型數據庫
    的頭像 發表于 01-07 10:22 ?102次閱讀

    數據庫數據恢復—Mysql數據庫表記錄丟失的數據恢復流程

    Mysql數據庫故障: Mysql數據庫表記錄丟失。 Mysql數據庫故障表現: 1、Mysql數據庫表中無任何數據或只有部分
    的頭像 發表于 12-16 11:05 ?184次閱讀
    <b class='flag-5'>數據庫</b><b class='flag-5'>數據</b>恢復—Mysql<b class='flag-5'>數據庫</b>表記錄丟失的<b class='flag-5'>數據</b>恢復流程

    數據庫數據恢復—MYSQL數據庫ibdata1文件損壞的數據恢復案例

    mysql數據庫故障: mysql數據庫文件ibdata1、MYI、MYD損壞。 故障表現:1、數據庫無法進行查詢等操作;2、使用mysqlcheck和myisamchk無法修復數據庫
    的頭像 發表于 12-09 11:05 ?192次閱讀

    數據庫數據恢復—通過拼接數據庫碎片恢復SQLserver數據庫

    一個運行在存儲上的SQLServer數據庫,有1000多個文件,大小幾十TB。數據庫每10天生成一個NDF文件,每個NDF幾百GB大小。數據庫包含兩個LDF文件。 存儲損壞,數據庫
    的頭像 發表于 10-31 13:21 ?280次閱讀
    <b class='flag-5'>數據庫</b><b class='flag-5'>數據</b>恢復—通過拼接<b class='flag-5'>數據庫</b>碎片恢復SQLserver<b class='flag-5'>數據庫</b>

    數據庫可以租用嗎?完整租用流程來了

    數據庫是可以租用的,這是一種合法且便捷的數據存儲和管理方式。云數據庫是云服務提供商提供的各種服務化的關系型數據庫(如RDS)、文檔數據庫
    的頭像 發表于 10-28 09:54 ?195次閱讀

    一文講清什么是分布式云化數據庫

    分布式云化數據庫是一種先進的數據管理系統,它將傳統的數據庫技術與分布式計算、云計算和大數據處理技術相融合。這種數據庫架構旨在提供
    的頭像 發表于 10-14 10:06 ?240次閱讀

    Oracle數據恢復—異常斷電后Oracle數據庫報錯的數據恢復案例

    Oracle數據庫的在線文件,需要恢復zxfg用戶的數據。 Oracle數據庫恢復方案: 檢測數據庫故障;嘗試掛起并修復
    的頭像 發表于 09-30 13:31 ?337次閱讀
    Oracle<b class='flag-5'>數據</b>恢復—異常斷電后Oracle<b class='flag-5'>數據庫</b>啟<b class='flag-5'>庫</b>報錯的<b class='flag-5'>數據</b>恢復案例

    企業級數據庫的配置和管理要求匯總

    企業級數據庫配置需高性能硬件支撐,包括服務器、存儲、網絡及電源冗余,選用穩定DBMS與操作系統,注重索引與查詢優化。管理上,強調數據安全,實施加密、訪問控制與審計;確保可用,配置容錯
    的頭像 發表于 09-27 10:50 ?225次閱讀

    數據庫數據恢復—SQL Server數據庫出現823錯誤的數據恢復案例

    SQL Server數據庫故障: SQL Server附加數據庫出現錯誤823,附加數據庫失敗。數據庫沒有備份,無法通過備份恢復數據庫
    的頭像 發表于 09-20 11:46 ?379次閱讀
    <b class='flag-5'>數據庫</b><b class='flag-5'>數據</b>恢復—SQL Server<b class='flag-5'>數據庫</b>出現823錯誤的<b class='flag-5'>數據</b>恢復案例

    數據庫數據恢復—raid5陣列上層Sql Server數據庫數據恢復案例

    數據庫數據恢復環境: 5塊硬盤組建一組RAID5陣列,劃分LUN供windows系統服務器使用。windows系統服務器內運行了Sql Server數據庫,存儲空間在操作系統層面劃分了三個邏輯分區
    的頭像 發表于 05-08 11:43 ?535次閱讀
    <b class='flag-5'>數據庫</b><b class='flag-5'>數據</b>恢復—raid5陣列上層Sql Server<b class='flag-5'>數據庫</b><b class='flag-5'>數據</b>恢復案例

    選擇 KV 數據庫最重要的是什么?

    經常有客戶提到 KV 數據庫,但卻偏偏“不要 Redis”。比如有個做安全威脅分析平臺的客戶,他們明確表示自己對可靠性要求非常,需要的不是開源 Redis 這種內存緩存,而是 KV 數據庫
    的頭像 發表于 03-28 22:11 ?718次閱讀
    選擇 KV <b class='flag-5'>數據庫</b>最重要的是什么?

    ?通過Modbus讀寫數據庫中的數據

    本文是將數據庫數據轉為Modbus服務端/從站,實現數據庫內的數據也可以走Modbus協議通過網口或串口讀寫的案例,下圖是通過智能網關的參
    發表于 03-14 13:44

    數倉中搭建細粒度應用的主要步驟

    對于MPPDB集群的而言,目前業界的常見方案要么是部署兩套規格配置同等的集群,要么通過邏輯雙加載方式去實現,這兩個方案缺點比較明顯,存在
    的頭像 發表于 02-22 11:19 ?435次閱讀
    數倉中搭建細粒度<b class='flag-5'>容</b><b class='flag-5'>災</b>應用的主要步驟

    數據庫數據恢復】Oracle數據庫ASM實例無法掛載的數據恢復案例

    oracle數據庫ASM磁盤組掉線,ASM實例不能掛載。數據庫管理員嘗試修復數據庫,但是沒有成功。
    的頭像 發表于 02-01 17:39 ?548次閱讀
    【<b class='flag-5'>數據庫</b><b class='flag-5'>數據</b>恢復】Oracle<b class='flag-5'>數據庫</b>ASM實例無法掛載的<b class='flag-5'>數據</b>恢復案例
    主站蜘蛛池模板: 免费日本黄色片| 女性一级全黄生活片在线播放| 不卡视频一区二区| 男人日女人的网站| 欧美国产黄色| 亚洲 欧美 成人| 正在播放久久| 中文字幕一区二区三区不卡| h视频免费在线| 国产性大片黄在线观看在线放| 午夜免费视频| 午夜啪| 免费观看成年欧美1314www色| 国产一级特黄| 农村三级毛片| 国产一级真人毛爱做毛片| 97久久伊人精品影院| 午夜高清视频在线观看| 久久午夜网| h免费视频| 伊人网99| 日本免费黄网站| 黄 色 免费网 站 成 人| a毛片成人免费全部播放| 奇米4色| 4444kk在线看片| 性做久久久久久久免费看| 日本特级黄色大片| 成熟女人免费一级毛片| 成年女人在线观看| 天天干天天草| 免费啪视频在线观看免费的| 最新天堂网| 亚洲四虎在线| 欧美一级特黄乱妇高清视频| 欧美专区一区二区三区| 国产大乳美女挤奶视频| 国产精品毛片一区二区三区| 天天天天天天天操| 美国bj69video18视频| 在线观看国产日本|