在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

研究人員開發解釋多義詞的神經網絡

NVIDIA英偉達企業解決方案 ? 來源:未知 ? 作者:胡薇 ? 2018-09-12 15:52 ? 次閱讀

脫離上下文時,每個英文單詞都有多重含義。例如,“bank”可以指銀行或河岸;“Fair”可以指展覽會,也可以指對展覽會的評價;“Duck”可以是躲避傷害的動作,也可以指鴨子。

對于人類來說搞清楚一個單詞在某場景中適用的含義是非常簡單的。但是,對于自然語言處理模型就是另一回事了。近些年已經出現很多用于解析文本的AI工具,但是當涉及到多重含義的單詞時,這些工具往往會陷入困境。來自艾倫人工智能研究所(Allen Institute for Artificial Intelligence)和華盛頓大學的研究人員正在努力解決這一難題,他們使用了可以根據上下文來確定英文單詞含義的神經網絡

向前和向后閱讀

通常,NLP模型通過詞向量(在每個單詞中附加語言含義和單詞語法的基礎元素)中的結構化數據進行訓練。此算法基于假設每個單詞只有一種向量表示,但實際上英文單詞并非如此。

研究人員利用名為“ELMo”的神經系統打破了這一假設,此神經系統可以為每個單詞創造出無限數量的向量。

“‘ELMo’是‘Embeddings from Language Models’的縮寫,而不是毛茸茸的紅色芝麻街角色”,論文“Deep contextualized word representations”的第一作者Matthew Peters解釋道。

ELMo喜歡閱讀:這不是美國幼兒教育電視節目《芝麻街》中的Elmo,而是使用雙向語言模型的神經系統ELMo。

常規語言模型嘗試預測句子中即將出現的下一個單詞。如果片段是“The people sat down on the …,”,那么算法將預測出“bench”或“grass”之類的單詞。為了給單詞附加所有潛在含義的詞向量,這個團隊使用了雙向語言模型。

使用雙向模型意味著,該模型可以通過一個二次的回顧性算法,獲取句子的結尾并嘗試預測出現在句子結尾前邊的單詞。當模型嘗試分析的單詞出現在句首,并且相關上下文隨即出現時,這會非常有用。

“就像‘He lies to his teacher’與‘He lies on the sofa’這種情況”,Peters說道。

為測試ELMo的技能,該團隊利用六種不同的NLP任務(包括情緒分析和問答等)對算法進行測試。與之前使用相同訓練數據的方法相比,ELMo每次都會得到更新、更出色的結果,在某些情況下可以比之前的領先模型提升25%的速度。

“在NLP中,很重要的一點是,單一的方法能夠提高多樣化任務的性能”,Peters指出。

ELMo在半監督式學習領域大放異彩

在進行自然語言處理時,訓練數據的類型非常關鍵。例如,問答系統使用的模型無法在任何舊文本上進行訓練。通常,此類模型需要在由帶標注的問題和答案對組成的大型數據庫中訓練,以學習如何做出正確的回答。

標注數據非常耗時并且成本高昂。因此,研究人員首先選擇使用包含大約十億個單詞的大型無標記學術數據庫來訓練ELMo。然后,針對特定任務(例如問答)將此數據庫調整為一個帶標注的小型數據庫。對于這種結合使用大量無標記數據和一小部分已標記數據的方法,統稱為“半監督式學習”。

減少對已標記和帶標注數據的依賴后,研究人員可以更輕松地在現實問題中應用其NLP模型應用。

“在我們的示例中,我們選擇了一個未標記的學術數據庫來訓練語言模型”,Peters說道。但是研究人員能夠調整算法,以便在任何其他未標記的數據庫中運行該算法,也可以將其應用于生物醫學論文、法律合同或其他語言等專業領域中。

與之前最先進(SOTA)的基準相比,ELMo在六個基準NLP任務中都增強了神經模型的性能。從左到右,這些任務依次是:語義推理、命名實體識別、問題回答、指代消解、語義角色標注和情感分類。

研究人員通過Amazon Web Service,使用NVIDIA Tesla V100和K80 GPU助力訓練和推理。

在后續論文中,研究人員指出其僅使用了幾百個已標記示例,便可應用ELMo模式回答幾何問題。人工需要花費幾個小時便能完成此標記工作,但卻會顯著提高NLP模型的性能。

ELMo已作為開源庫提供。Peters表示其他的NLP研究人員已經將此模型應用到了他們自己的工作中,包括除英語外的其他語言。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4772

    瀏覽量

    100808
  • nlp
    nlp
    +關注

    關注

    1

    文章

    488

    瀏覽量

    22046

原文標題:“躲避”or“鴨子”:看深度學習如何解釋多義詞

文章出處:【微信號:NVIDIA-Enterprise,微信公眾號:NVIDIA英偉達企業解決方案】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    基于光學衍射神經網絡的軌道角動量復用全息技術的設計與實驗研究

    隨著神經網絡的發展,光學神經網絡(ONN)的研究受到廣泛關注。研究人員從衍射光學、散射光、光干涉以及光學傅里葉變換等基礎理論出發,利用各種光學設備及材料成功實現了
    的頭像 發表于 12-07 17:39 ?1896次閱讀
    基于光學衍射<b class='flag-5'>神經網絡</b>的軌道角動量復用全息技術的設計與實驗<b class='flag-5'>研究</b>

    卷積神經網絡的實現工具與框架

    卷積神經網絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發展,多種實現工具和框架應運而生,為研究人員開發者提供了強大的支持。 TensorFlow 概述
    的頭像 發表于 11-15 15:20 ?276次閱讀

    BP神經網絡和卷積神經網絡的關系

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學習領域
    的頭像 發表于 07-10 15:24 ?1557次閱讀

    BP神經網絡和人工神經網絡的區別

    BP神經網絡和人工神經網絡(Artificial Neural Networks,簡稱ANNs)之間的關系與區別,是神經網絡領域中一個基礎且重要的話題。本文將從定義、結構、算法、應用及未來發展等多個方面,詳細闡述BP
    的頭像 發表于 07-10 15:20 ?1115次閱讀

    全連接前饋神經網絡與前饋神經網絡的比較

    Neural Network, FCNN)和前饋神經網絡(Feedforward Neural Network, FNN)因其結構簡單、易于理解和實現,成為了研究者們關注的熱點。本文將從概念、模型結構、優缺點以及應用場景等方面,對全連接前饋
    的頭像 發表于 07-09 10:31 ?8950次閱讀

    rnn是遞歸神經網絡還是循環神經網絡

    RNN(Recurrent Neural Network)是循環神經網絡,而非遞歸神經網絡。循環神經網絡是一種具有時間序列特性的神經網絡,能夠處理序列數據,具有記憶功能。以下是關于循環
    的頭像 發表于 07-05 09:52 ?585次閱讀

    遞歸神經網絡是循環神經網絡

    遞歸神經網絡(Recurrent Neural Network,簡稱RNN)和循環神經網絡(Recurrent Neural Network,簡稱RNN)實際上是同一個概念,只是不同的翻譯方式
    的頭像 發表于 07-04 14:54 ?789次閱讀

    循環神經網絡和卷積神經網絡的區別

    循環神經網絡(Recurrent Neural Network,RNN)和卷積神經網絡(Convolutional Neural Network,CNN)是深度學習領域中兩種非常重要的神經網絡
    的頭像 發表于 07-04 14:24 ?1314次閱讀

    深度神經網絡與基本神經網絡的區別

    在探討深度神經網絡(Deep Neural Networks, DNNs)與基本神經網絡(通常指傳統神經網絡或前向神經網絡)的區別時,我們需要從多個維度進行深入分析。這些維度包括
    的頭像 發表于 07-04 13:20 ?897次閱讀

    bp神經網絡和反向傳播神經網絡區別在哪

    神經網絡在許多領域都有廣泛的應用,如語音識別、圖像識別、自然語言處理等。然而,BP神經網絡也存在一些問題,如容易陷入局部最優解、訓練時間長、對初始權重敏感等。為了解決這些問題,研究者們提出了一些改進的BP
    的頭像 發表于 07-04 09:51 ?441次閱讀

    反向傳播神經網絡和bp神經網絡的區別

    神經網絡在許多領域都有廣泛的應用,如語音識別、圖像識別、自然語言處理等。然而,BP神經網絡也存在一些問題,如容易陷入局部最優解、訓練時間長、對初始權重敏感等。為了解決這些問題,研究者們提出了一些改進的BP
    的頭像 發表于 07-03 11:00 ?819次閱讀

    bp神經網絡是深度神經網絡

    Network)有相似之處,但它們之間還是存在一些關鍵的區別。 一、引言 神經網絡是一種模擬人腦神經元結構的計算模型,它由大量的神經元(或稱為節點)組成,這些神經元通過權重連接在一起
    的頭像 發表于 07-03 10:14 ?860次閱讀

    bp神經網絡和卷積神經網絡區別是什么

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經網絡,它們在
    的頭像 發表于 07-03 10:12 ?1204次閱讀

    卷積神經網絡和bp神經網絡的區別

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)和BP神經網絡(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發表于 07-02 14:24 ?4119次閱讀

    詳解深度學習、神經網絡與卷積神經網絡的應用

    處理技術也可以通過深度學習來獲得更優異的效果,比如去噪、超分辨率和跟蹤算法等。為了跟上時代的步伐,必須對深度學習與神經網絡技術有所學習和研究。本文將介紹深度學習技術、神經網絡與卷積神經網絡
    的頭像 發表于 01-11 10:51 ?2061次閱讀
    詳解深度學習、<b class='flag-5'>神經網絡</b>與卷積<b class='flag-5'>神經網絡</b>的應用
    主站蜘蛛池模板: 久久人成| 天天干在线影院| 黄色综合| ts 人妖 另类 在线| 嫩草影院在线入口| 欧美精品一区在线看| 琪琪午夜免费影院在线观看| 你懂的免费| 久久99精品久久久久久野外| 日本黄色免费在线| 五月婷丁香| 四虎影院在线免费播放| 狠狠色色综合网站| 99国产在线| 欧洲精品不卡1卡2卡三卡| 精品一区二区三区在线视频| 永久看日本大片免费| 免费看黄视频| 黄色午夜| 久久99热国产这有精品| 亚洲成人免费在线观看| 国产精品一久久香蕉产线看| 一级久久久| 正在播放久久| 四虎影院在线免费观看视频| 免费黄色一级毛片| 欧美一区二区三区大片| 黄色三级国产| 午夜免费看视频| 成人一级网站| 国产大片免费观看中文字幕| 欧美成人影院| 免费观看欧美成人1314色| 777奇米四色米奇影院在线播放| 亚洲一区二区免费在线观看| 32pao强力打造免费高速高清| 男人午夜网站| 四虎影院在线看| 黄色福利视频网站| 国产色婷婷免费视频| 天天视频免费观看高清影视|