在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

【連載】深度學(xué)習(xí)筆記9:卷積神經(jīng)網(wǎng)絡(luò)(CNN)入門

人工智能實訓(xùn)營 ? 2018-10-08 12:56 ? 次閱讀

前面的八篇學(xué)習(xí)筆記,基本上都是圍繞著深度神經(jīng)網(wǎng)絡(luò)(DNN)和全連接網(wǎng)絡(luò)(FCN)在學(xué)習(xí)。從本篇開始,筆者將跟著大家一起學(xué)習(xí)和研究深度學(xué)習(xí)的另一個主題——卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network),也就是我們平常眼熟的 CNN。卷積神經(jīng)網(wǎng)絡(luò)作為當(dāng)前計算機(jī)視覺領(lǐng)域的核心技術(shù),發(fā)展到如今已是枝繁葉茂。筆者對于這一塊的初步打算是從卷積網(wǎng)絡(luò)的基本原理講起,將卷積網(wǎng)絡(luò)的前向傳播和反向傳播過程講清楚,以及如何使用 numpytensorflow 實現(xiàn)卷積網(wǎng)絡(luò)。然后會從深度卷積網(wǎng)絡(luò)的發(fā)展歷程出發(fā),對主要的經(jīng)典深度網(wǎng)絡(luò)進(jìn)行深度剖析,對計算機(jī)視覺的三大核心任務(wù):圖像分別、目標(biāo)檢測和圖像分割等技術(shù)算法進(jìn)行詳細(xì)學(xué)習(xí)和講解。

從前面的學(xué)習(xí)中,我們了解了深度神經(jīng)網(wǎng)絡(luò)的一般結(jié)構(gòu),它的前向傳播和反向傳播機(jī)制,而卷積神經(jīng)網(wǎng)絡(luò)相較于深度神經(jīng)網(wǎng)絡(luò),其主要區(qū)別就在于卷積層,卷積層的存在使得神經(jīng)網(wǎng)絡(luò)具備更強(qiáng)的學(xué)習(xí)能力。除了卷積層之外,池化層(Pooling layer)的存在也使得卷積神經(jīng)網(wǎng)絡(luò)的魯棒性更強(qiáng),最后則是 DNN 中常見的全連接層(Fully Connected layer)。一個典型的卷積神經(jīng)網(wǎng)絡(luò)通常包括這三層。

卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)

那到底什么是卷積?
從數(shù)學(xué)來說,卷積可以理解為一種類似于加權(quán)運算一樣的操作。在圖像處理中,針對圖像的像素矩陣,卷積操作就是用一個卷積核來逐行逐列的掃描像素矩陣,并與像素矩陣做元素相乘,以此得到新的像素矩陣。這個過程是為卷積。其中卷積核也叫過濾器或者濾波器,濾波器在輸入像素矩陣上掃過的面積稱之為感受野??赡苣氵€有點暈,讓我來更詳細(xì)的解釋下。

卷積過程


且看上面的動圖(這里感謝一下 NG 大大給我們提供這么好的教學(xué)資料),我們用一個 3x3 的濾波器去掃描一個 5x5 的像素矩陣,用濾波器中每一個元素與像素矩陣中感受野內(nèi)的元素進(jìn)行乘積運算,可得到了一個 3x3 的輸出像素矩陣,這個輸出的 3x3 像素矩陣能夠較大程度的提取原始像素矩陣的圖像特征,這也是卷積神經(jīng)網(wǎng)絡(luò)之所以有效的原因。為防止有同學(xué)不清楚卷積是如何計算的,筆者以輸出像素矩陣中第一個元素 4 為例,演示一下計算過程:

1x1 + 1x0 + 1x1 + 0x0 +1x1 + 1x0 + 0x1 +0x0 + 1x1 = 4

當(dāng)然,這里你可能會問:如何確定經(jīng)過卷積后的輸出矩陣的維度?我們是有計算公式的。假設(shè)原始輸入像素矩陣的 shape 為 nxn,濾波器的 shape 為 fxf,那么輸出像素矩陣的 shape 為 (n-f+1)x(n-f+1) 。

大體上卷積操作就是這么個過程,是不是非常簡單。但這里我們也需要注意兩個問題:第一個就是濾波器移動的步幅問題,上面的例子中我們的濾波器的移動步長為 1 ,即在像素矩陣上一格一格平移。但如果濾波器是以兩個單位或者更多單位平移呢?這里就涉及到卷積過程中的 stride 問題。第二個問題涉及到卷積操作的兩個缺點,第一個缺點在于每次做卷積,你的圖像就會變小,可能做了幾次卷積之后,你的圖像就變成 1x1,這就不好辦了。第二個缺點在于原始輸入像素矩陣的邊緣和角落的像素點只能被濾波器掃到一次,而靠近像素中心點的像素點則會被多次掃到進(jìn)行卷積。這就使得邊緣和角落里的像素特征提取不足,這就涉及到卷積過程中的 padding 問題。

針對第一個問題,也就是卷積步長問題,其實也很簡單,就是按照正常的卷積過程去操作,只不過每次多走一個像素單位而已。且看卷積步幅為 2 的卷積操作示例:


我們用一個 3x3 的濾波器去對原始像素為 7x7 的圖像進(jìn)行卷積操作,設(shè)定卷積步長為 2,可看到輸出像素矩陣的第二行第一個元素 69 的計算跨越了兩個像素格點,計算過程為:

3x3 + 4x4 + 8x4 + 7x1 + 8x0 + 3x2 + 4x-1 + 2x0 + 1x3 = 69

加入步長之后我們的輸出像素矩陣的 shape 的計算公式需要更新一下為:
((n-f)/s+1)x((n-f)/s+1) 。其中 s 為步長。

針對第二個問題,卷積神經(jīng)網(wǎng)絡(luò)采用一種叫做 padding 的操作,即對原始像素邊緣和角落進(jìn)行零填充,以期能夠在卷積過程中充分利用邊緣和角落的像素特征。至于填充多少 0 像素值,一般有兩個選擇,一是 valid 填充,也就是不填充,所以就不用管它了。我們在意的是有填充,就是第二種,same 填充方法。即填充后,輸入和輸出大小是一致的,對于nxn大小的輸入像素,如果你用填充了 p 個像素點之后,n 就變成了 n+2p,最后輸出像素的 shape 計算公式就變成了 ((n+2p-f)/s+1)x((n+2p-f)/s+1),要想讓 n+2p-f+1=n 的話,輸入輸出大小相等,則 p=(f-1)/2。所以,一般而言,濾波器的大小 f 都會選擇為奇數(shù)個。

實際操作中,padding 的編程寫法如下:

def zero_pad(X, pad):
  X_pad = np.pad(X, ((0,0), (pad, pad), (pad, pad), (0, 0)), 'constant')  
return X_pad

numpy 一行代碼即可搞定。測試效果如下:

np.random.seed(1)
x = np.random.randn(4, 3, 3, 2) x_pad = zero_pad(x, 2) fig, axarr = plt.subplots(1, 2) axarr[0].set_title('x') axarr[0].imshow(x[0,:,:,0]) axarr[1].set_title('x_pad') axarr[1].imshow(x_pad[0,:,:,0])

本節(jié)對卷積神經(jīng)網(wǎng)絡(luò)的卷積細(xì)節(jié)進(jìn)行了詳細(xì)的講解和筆記。關(guān)于帶有顏色通道的卷積操作我們下次筆記見。

本文由《自興動腦人工智能》項目部 凱文 投稿。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1792

    文章

    47436

    瀏覽量

    238979
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8425

    瀏覽量

    132772
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5508

    瀏覽量

    121295
收藏 人收藏

    評論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)算法,它在圖像識別、視頻分析、自然語言處
    的頭像 發(fā)表于 07-11 14:38 ?1129次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    深度學(xué)習(xí)領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)和循環(huán)
    的頭像 發(fā)表于 07-03 16:12 ?3494次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然
    的頭像 發(fā)表于 07-03 10:49 ?566次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)分類方法有哪些

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像分類、目標(biāo)檢測、語義分割
    的頭像 發(fā)表于 07-03 09:40 ?492次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和工作原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然
    的頭像 發(fā)表于 07-03 09:38 ?699次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)分類有哪些

    卷積神經(jīng)網(wǎng)絡(luò)CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像分類、目標(biāo)檢測、語義分割等領(lǐng)域。本文將詳細(xì)介紹C
    的頭像 發(fā)表于 07-03 09:28 ?646次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)三大特點是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然
    的頭像 發(fā)表于 07-03 09:26 ?1412次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然
    的頭像 發(fā)表于 07-03 09:15 ?440次閱讀

    深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)作為其中的重要分支,
    的頭像 發(fā)表于 07-02 18:19 ?932次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實現(xiàn)

    1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、
    的頭像 發(fā)表于 07-02 16:47 ?615次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)cnn模型有哪些

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然
    的頭像 發(fā)表于 07-02 15:24 ?746次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)及其功能

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語
    的頭像 發(fā)表于 07-02 14:45 ?2358次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、語音識別、自然語
    的頭像 發(fā)表于 07-02 14:44 ?678次閱讀

    深度神經(jīng)網(wǎng)絡(luò)模型cnn的基本概念、結(jié)構(gòu)及原理

    ,其核心是構(gòu)建具有多層結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)模型,以實現(xiàn)對復(fù)雜數(shù)據(jù)的高效表示和處理。在眾多深度學(xué)習(xí)模型中,卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-02 10:11 ?9785次閱讀

    詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    處理技術(shù)也可以通過深度學(xué)習(xí)來獲得更優(yōu)異的效果,比如去噪、超分辨率和跟蹤算法等。為了跟上時代的步伐,必須對深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)技術(shù)有所
    的頭像 發(fā)表于 01-11 10:51 ?2212次閱讀
    詳解<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>、<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>與<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的應(yīng)用
    主站蜘蛛池模板: 天堂亚洲网| 99久久免费午夜国产精品| 国产真实野战在线视频| 精品卡一卡二 卡四卡视频| 特级毛片aaaaaa蜜桃| 久操精品在线观看| 欧美性性性性性ⅹxxbbbb| 女人又色又爽又黄| 伊人操| 久久婷婷综合五月一区二区| 四虎国产精品永久在线| 一色屋成人免费精品网| 亚洲无吗在线视频| 欧美人与z0zoxxxx| 一二三区在线视频| 99久久精品费精品国产一区二| 亚洲区在线播放| 欧美18在线| 欧美亚洲第一区| 午夜影音| 亚洲免费视频播放| 一级特黄特黄xxx视频| 色猫成人网| 色婷婷网| 恐怖片大全恐怖片免费观看好看的恐怖片 | 久久久xxx| 婷婷射丁香| 五月婷婷久久综合| 曰本福利写真片视频在线| 国产99在线播放免费| 免费视频亚洲| 国产一区二区三区夜色| 免费a网站| 四虎永久在线精品国产| 久久精品国产夜色| 国内精品免费视频精选在线观看| 看全色黄大色大片免费久久怂| 丁香午夜| 亚洲午夜在线视频| 天天插夜夜| 欧美精品xxxxbbbb|