在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

MIT利用深度學(xué)習(xí)解讀X光片的差異

NVIDIA英偉達(dá)企業(yè)解決方案 ? 來源:未知 ? 作者:胡薇 ? 2018-11-07 08:35 ? 次閱讀

根據(jù)分析乳房X光片,不同的放射科醫(yī)生所讀取的乳房密度有很大差異,而乳房密度則是表明患者是否有患乳腺癌的風(fēng)險(xiǎn)的評估指標(biāo)。

研究發(fā)現(xiàn),放射科醫(yī)生將乳房X光片中介于6%和85%之間的任何區(qū)域分類為“不均勻致密型”或“極度致密型”癌癥高風(fēng)險(xiǎn)區(qū)域。

麻省理工的研究人員使用神經(jīng)網(wǎng)絡(luò)減少放射科醫(yī)生對乳房X光片解讀的這種差異。

他們的深度學(xué)習(xí)模型由放射科醫(yī)生在麻省總醫(yī)院的篩查中心使用。研究人員表示,這是首次在大規(guī)模臨床實(shí)踐的日常工作流程中部署這樣的模型。

更好地了解風(fēng)險(xiǎn)

在美國,每年會執(zhí)行大約3300萬次篩查性乳房X光檢查。這些篩查能夠在任何相關(guān)癥狀出現(xiàn)之前揭示乳腺癌的存在,但是還包括另一個(gè)重要評估:乳房組織密度。

在評估乳房X光片時(shí),放射科醫(yī)生根據(jù)乳房組織的密度和分布,將掃描結(jié)果分為四個(gè)部分:脂肪型、散布、不均勻致密型或極度致密型。

后兩類是需要多加注意的。如果乳房X光片評估為其中一種,意味著高密度、支持性的乳房組織所占的比例較高。與脂肪組織不同,乳房X光片上的支持性組織看起來不那么透明,這使乳房的其他部位變得模糊,更難發(fā)現(xiàn)異常情況。

它也是獨(dú)立的癌癥風(fēng)險(xiǎn)因素,具有高乳房密度的女性患乳房癌的可能性比低乳房密度的女性高四到五倍。

在美國,大約一半年齡在40到74歲之間的女性被評估為乳房致密,這意味著長期看來,由于患乳腺癌的風(fēng)險(xiǎn)較高,她們可能需要接受MRI等其他篩查方法。

深度學(xué)習(xí)有助于向病患提供非常一致的篩查結(jié)果,便于其更好地了解風(fēng)險(xiǎn)。

乳房密度是整體特征,是基于完整的乳房X光片衡量的屬性。這就更易于神經(jīng)網(wǎng)絡(luò)對其進(jìn)行分析,麻省理工研究生和論文合著者Kyle Swanson說。

該團(tuán)隊(duì)在成千上萬張帶標(biāo)記的數(shù)字乳房X光片(由不同的放射科醫(yī)生進(jìn)行評估)上對其深度學(xué)習(xí)工具進(jìn)行了訓(xùn)練。

結(jié)果是,神經(jīng)網(wǎng)絡(luò)的乳房X光檢查評估與多名放射科醫(yī)生的共識讀數(shù)比任何一位醫(yī)生都要接近。在臨床環(huán)境中,這可以讓放射科醫(yī)生根據(jù)此一致評估對掃描結(jié)果做出判斷。

將深度學(xué)習(xí)應(yīng)用到臨床

自1月開始,麻省總醫(yī)院篩查中心的放射科醫(yī)生便已經(jīng)開始在其臨床工作流程中使用深度學(xué)習(xí)模型。分析乳房X光片時(shí),放射科醫(yī)生會看到深度學(xué)習(xí)模型做出的評估,并決定是否與其保持一致意見。

為評估模型是否成功,研究人員記錄下了在10,000多次神經(jīng)網(wǎng)絡(luò)評估的掃描中,參與解釋的放射科醫(yī)生接受其評估結(jié)果的次數(shù)。

在放射科醫(yī)生事先沒有看到模型的判斷直接讀取乳房X光片時(shí),其評估有87%的情況與神經(jīng)網(wǎng)絡(luò)一致。但是如果先看到深度學(xué)習(xí)評估,乳房X光攝影師有94%的情況與模型一致。

論文結(jié)果顯示,深度學(xué)習(xí)模型能夠以資深放射科醫(yī)生的水平讀取掃描,并提高密度評估的一致性。其他不使用深度學(xué)習(xí)的自動(dòng)化方法也與放射科醫(yī)生不一致,Yala說。

到目前為止,放射科醫(yī)生已在約18,000次乳房X光片評估中使用深度學(xué)習(xí)模型。研究人員使用NVIDIA GPU訓(xùn)練其卷積神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)使用PyTorch深度學(xué)習(xí)框架開發(fā)得出。

Yala說道,他們的目標(biāo)是減少在此主觀判斷中的變動(dòng)量,確保病患得到正確的風(fēng)險(xiǎn)評估。

他說:“這應(yīng)該與運(yùn)氣無關(guān),每個(gè)人都應(yīng)該向您交付相同的評估結(jié)果。”

密度評估只是第一步,研究人員還在研究深度學(xué)習(xí)工具,以便提前5年檢測出哪些患者患癌癥的風(fēng)險(xiǎn)較高。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4776

    瀏覽量

    100952
  • MIT
    MIT
    +關(guān)注

    關(guān)注

    3

    文章

    253

    瀏覽量

    23428
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5510

    瀏覽量

    121338

原文標(biāo)題:MIT部署深度學(xué)習(xí)工具 更準(zhǔn)確分析X光片助力乳癌篩查

文章出處:【微信號:NVIDIA-Enterprise,微信公眾號:NVIDIA英偉達(dá)企業(yè)解決方案】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    Flexus X 實(shí)例 ultralytics 模型 yolov10 深度學(xué)習(xí) AI 部署與應(yīng)用

    前言: ???深度學(xué)習(xí)新紀(jì)元,828 B2B 企業(yè)節(jié) Flexus X 實(shí)例特惠!想要高效訓(xùn)練 YOLOv10 模型,實(shí)現(xiàn)精準(zhǔn)圖像識別?Flexus X 以卓越算力,助您輕松駕馭大規(guī)模
    的頭像 發(fā)表于 12-24 12:24 ?337次閱讀
    Flexus <b class='flag-5'>X</b> 實(shí)例 ultralytics 模型 yolov10 <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b> AI 部署與應(yīng)用

    深度學(xué)習(xí)工作負(fù)載中GPU與LPU的主要差異

    ,一個(gè)新的競爭力量——LPU(Language Processing Unit,語言處理單元)已悄然登場,LPU專注于解決自然語言處理(NLP)任務(wù)中的順序性問題,是構(gòu)建AI應(yīng)用不可或缺的一環(huán)。 本文旨在探討深度學(xué)習(xí)工作負(fù)載中GPU與LPU的主要
    的頭像 發(fā)表于 12-09 11:01 ?381次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>工作負(fù)載中GPU與LPU的主要<b class='flag-5'>差異</b>

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?726次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識別 圖像識別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?440次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    FPGA(現(xiàn)場可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個(gè)熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)模型的案例: 一、基于FPGA的AlexNet卷積運(yùn)算加速 項(xiàng)目名稱
    的頭像 發(fā)表于 10-25 09:22 ?284次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?1020次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    ,共同進(jìn)步。 歡迎加入FPGA技術(shù)微信交流群14群! 交流問題(一) Q:FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?現(xiàn)在用FPGA做深度學(xué)習(xí)加速成為一個(gè)熱門,深鑒科技,商湯,曠視科技等都有基于FPG
    發(fā)表于 09-27 20:53

    利用Matlab函數(shù)實(shí)現(xiàn)深度學(xué)習(xí)算法

    在Matlab中實(shí)現(xiàn)深度學(xué)習(xí)算法是一個(gè)復(fù)雜但強(qiáng)大的過程,可以應(yīng)用于各種領(lǐng)域,如圖像識別、自然語言處理、時(shí)間序列預(yù)測等。這里,我將概述一個(gè)基本的流程,包括環(huán)境設(shè)置、數(shù)據(jù)準(zhǔn)備、模型設(shè)計(jì)、訓(xùn)練過程、以及測試和評估,并提供一個(gè)基于Matlab的
    的頭像 發(fā)表于 07-14 14:21 ?2372次閱讀

    深度學(xué)習(xí)中的時(shí)間序列分類方法

    時(shí)間序列分類(Time Series Classification, TSC)是機(jī)器學(xué)習(xí)深度學(xué)習(xí)領(lǐng)域的重要任務(wù)之一,廣泛應(yīng)用于人體活動(dòng)識別、系統(tǒng)監(jiān)測、金融預(yù)測、醫(yī)療診斷等多個(gè)領(lǐng)域。隨著深度
    的頭像 發(fā)表于 07-09 15:54 ?1069次閱讀

    深度學(xué)習(xí)與nlp的區(qū)別在哪

    深度學(xué)習(xí)和自然語言處理(NLP)是計(jì)算機(jī)科學(xué)領(lǐng)域中兩個(gè)非常重要的研究方向。它們之間既有聯(lián)系,也有區(qū)別。本文將介紹深度學(xué)習(xí)與NLP的區(qū)別。 深度
    的頭像 發(fā)表于 07-05 09:47 ?994次閱讀

    深度學(xué)習(xí)的典型模型和訓(xùn)練過程

    深度學(xué)習(xí)作為人工智能領(lǐng)域的一個(gè)重要分支,近年來在圖像識別、語音識別、自然語言處理等多個(gè)領(lǐng)域取得了顯著進(jìn)展。其核心在于通過構(gòu)建復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型,從大規(guī)模數(shù)據(jù)中自動(dòng)學(xué)習(xí)并提取特征,進(jìn)而實(shí)現(xiàn)高效準(zhǔn)確的預(yù)測和分類。本文將深入
    的頭像 發(fā)表于 07-03 16:06 ?1598次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)深度學(xué)習(xí)無疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于機(jī)器學(xué)習(xí)的范疇,但
    的頭像 發(fā)表于 07-01 11:40 ?1466次閱讀

    FCom解讀熱敏晶振與溫補(bǔ)晶振:從結(jié)構(gòu)到原理,從差異到使用條件

    解讀熱敏晶振與溫補(bǔ)晶振:從結(jié)構(gòu)到原理,從差異到使用條件 一、結(jié)構(gòu)組成 二、工作原理 三、相似點(diǎn) 四、區(qū)別 五、使用條件
    的頭像 發(fā)表于 05-23 12:04 ?1905次閱讀
    FCom<b class='flag-5'>解讀</b>熱敏晶振與溫補(bǔ)晶振:從結(jié)構(gòu)到原理,從<b class='flag-5'>差異</b>到使用條件

    深度解析深度學(xué)習(xí)下的語義SLAM

    隨著深度學(xué)習(xí)技術(shù)的興起,計(jì)算機(jī)視覺的許多傳統(tǒng)領(lǐng)域都取得了突破性進(jìn)展,例如目標(biāo)的檢測、識別和分類等領(lǐng)域。近年來,研究人員開始在視覺SLAM算法中引入深度學(xué)習(xí)技術(shù),使得
    發(fā)表于 04-23 17:18 ?1334次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>下的語義SLAM

    為什么深度學(xué)習(xí)的效果更好?

    導(dǎo)讀深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)子集,已成為人工智能領(lǐng)域的一項(xiàng)變革性技術(shù),在從計(jì)算機(jī)視覺、自然語言處理到自動(dòng)駕駛汽車等廣泛的應(yīng)用中取得了顯著的成功。深度
    的頭像 發(fā)表于 03-09 08:26 ?650次閱讀
    為什么<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>的效果更好?
    主站蜘蛛池模板: 黄到让你下面湿的视频| 美女扒开内裤无遮挡禁18| 人人天天夜夜| 美女禁处| 1024手机在线观看视频| 91av视频网站| 色多多免费在线观看| 视频在线高清完整免费观看| 2019天天操夜夜操| 狠狠躁夜夜躁人人爽天天miya| 一区二区在线看| 成人国产精品一级毛片了| 在线伊人网| 四虎影视在线影院4hutv| 亚洲网色| 四虎伦理| 久青草国产手机在线视频 | 欧美黑人性受xxxx精品| 亚洲综合资源| 一级毛片一级毛片一级级毛片| 天堂在线.www资源在线观看| 欧美成人精品| aaa一级片| 日本高清免费一本视频在线观看| 插插插天天| 欧美午夜剧场| 五月婷婷丁香久久| 亚洲欧美在线播放| 三级在线免费观看| 国产亚洲综合色就色| 午夜小视频免费观看| 国产精品免费看久久久| 亚洲系列中文字幕一区二区| 亚洲成a人片在线观看中| 年轻护士3的滋味| xxx86日本人| 国产午夜精品久久理论片小说| 婷婷在线免费观看| 色天天综合网色鬼综合| 丁香婷婷久久大综合| 久久久国产精品免费|