在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于雙目視覺(jué)的自動(dòng)駕駛中障礙物識(shí)別問(wèn)題

ml8z_IV_Technol ? 來(lái)源:李倩 ? 2018-11-29 16:27 ? 次閱讀

基于現(xiàn)實(shí)世界是一個(gè)三維空間,所以對(duì)計(jì)算機(jī)視覺(jué)的研究也應(yīng)該是在三維空間中進(jìn)行的。在自動(dòng)駕駛過(guò)程中的首要任務(wù)就是道路識(shí)別 [1] ,主要是圖像特征法和模型匹配法來(lái)進(jìn)行識(shí)別。行駛過(guò)程中需要進(jìn)行障礙物檢測(cè) [2] 和路標(biāo)路牌識(shí)別等,此時(shí)車(chē)輛上的信息采集便可以運(yùn)用單目視覺(jué)或者多目視覺(jué)。

相比之下,運(yùn)用多目視覺(jué)更具優(yōu)勢(shì),獲取的圖像信息可構(gòu)建成三維空間,物體運(yùn)動(dòng)以及遮擋等問(wèn)題對(duì)其影響較小。目前有很多智能小車(chē)的研究都是基于室內(nèi)環(huán)境的研究,本文基于室外環(huán)境,采用雙目攝像機(jī)模型 [3] ,考慮光照、路面材質(zhì)等問(wèn)題,采用分水嶺算法 [4] 對(duì)智能車(chē)的區(qū)域進(jìn)行定位,以及在行駛區(qū)域中采用多閾值 canny 算法來(lái)進(jìn)行障礙物的檢測(cè),進(jìn)而計(jì)算出障礙物大小位置等信息。

分水嶺算法

定義極小值點(diǎn),本質(zhì)上的意義就是定義道路和圖像中其他區(qū)域的極小值點(diǎn),使道路與圖像中的其他區(qū)域劃分開(kāi)。 接著對(duì)極小值點(diǎn)的相鄰像素按照等級(jí)進(jìn)行逐級(jí)劃分,等級(jí)是按照極小值點(diǎn)與相鄰像素的距離劃分的,而這里的距離是指兩個(gè)像素點(diǎn)之間灰度值的差值。 從定義的極小值點(diǎn)開(kāi)始逐步擴(kuò)展形成集水盆。 從最小等級(jí)開(kāi)始,對(duì)與集水盆相鄰的像素點(diǎn)進(jìn)行擴(kuò)展。 如果當(dāng)前要擴(kuò)展的像素點(diǎn)只與一個(gè)集水盆相連,則把該點(diǎn)標(biāo)記為相近集水盆的標(biāo)記;如果當(dāng)前要擴(kuò)展的像素點(diǎn) 2個(gè)或多個(gè)集水盆相連,則把該點(diǎn)標(biāo)記為分水線(xiàn)或者分水嶺。 在進(jìn)行擴(kuò)展的過(guò)程中,只有當(dāng)前等級(jí)的所有像素被劃分完畢后,才能對(duì)下一個(gè)等級(jí)的像素進(jìn)行劃分。

基于多閾值 canny 的障礙物檢測(cè)

由于室外環(huán)境下,陰影、光照、雨水等天氣原因都會(huì)對(duì)圖像的拍攝造成影響,所以采用的是雙目攝像頭模型,可以有效地減輕外界因素對(duì)圖像的干擾。

Canny 邊緣檢測(cè) [5] 算法閾值的不同,會(huì)導(dǎo)致所獲得的邊緣信息不同,本文中利用 2 個(gè)不同的閾值將點(diǎn)分為 3 類(lèi):強(qiáng)邊緣點(diǎn)、弱邊緣點(diǎn)、弱紋理點(diǎn);其中弱邊緣點(diǎn)是利用閾值較小的算子檢測(cè),除去通過(guò)閾值較大的算子得到的強(qiáng)邊緣點(diǎn)所剩下的點(diǎn);剩余的其他像素點(diǎn)則為弱紋理點(diǎn)。 再根據(jù)各點(diǎn)特征分配匹配窗口大小,強(qiáng)邊緣點(diǎn)主要是位于邊界和視差不連續(xù)點(diǎn),其支持窗口應(yīng)該越小越好;而弱紋理點(diǎn)周?chē)奶荻茸兓幻黠@,窗口應(yīng)足夠大,包含更多的圖像信息進(jìn)來(lái);而弱邊緣點(diǎn)特征介于強(qiáng)邊緣點(diǎn)與弱紋理點(diǎn)之間,處于 2 個(gè)以上的弱紋理交界處,兼有邊緣與弱紋理的特征,所以窗口介于兩者之間。 在本文算法中,強(qiáng)邊緣點(diǎn)分配的是 1 ×3 窗口,弱邊緣點(diǎn)分配的是 5 ×5 窗口,弱紋理點(diǎn)分配的是 11 ×11 窗口。

分配好所有點(diǎn)的窗口大小后,則需要進(jìn)行最關(guān)鍵的一步———立體匹配 [6] 。 本文采用的是SAD 來(lái)作為匹配測(cè)度函數(shù),如式(1)。 算法中假設(shè)以右圖為參考圖,令為匹配測(cè)度,d 為滑動(dòng)窗口位移量,Wr 為匹配窗口,Ir (x,y)和 Ii(x+d,y) 分別為左圖和右圖中匹配窗口中心像素的灰度值。

最后可得到一幅初始視差圖,圖像的灰度深淺即表示了前方物體離攝像機(jī)的遠(yuǎn)近。

障礙物判別

在得到初始視差圖后,需要進(jìn)一步判別障礙物的遠(yuǎn)近及大小,所以這里引入 V-視差和 U-視差理論 [7] 。 V-視差圖是在初始視差圖的基礎(chǔ)上,累加視差圖像每一行上具有相同視差值 dv 的像素個(gè)數(shù),以像素的個(gè)數(shù)作為像素坐標(biāo)(dv,y)的灰度值,為 0 到 255。 V-視差圖的高度與原圖像是相同的,但是寬度只有 256 [8] 。 同理,U-視差圖是累加視差圖像每一列上具有相同視差值 du 的像素個(gè)數(shù),高度為 256。

根據(jù) V-視差圖的原理,每一行中的視差值相同點(diǎn)的個(gè)數(shù)會(huì)被投影成一條直線(xiàn),所以在 V-視差圖中路面是一條斜線(xiàn),障礙物是一條看似與斜線(xiàn)垂直的線(xiàn)段,可以通過(guò)該線(xiàn)段求出障礙物的高度 。同理,可通過(guò) U-視差圖計(jì)算出障礙物的寬度。 根據(jù)初始視差圖中包含的視差值,由式(2)可以計(jì)算出每個(gè)障礙物的距離,其中攝像機(jī)的焦距 f 和 2 個(gè)攝像機(jī)基線(xiàn)距離 b 均是固定并且是已知的。

實(shí)驗(yàn)結(jié)果

4.1 道路識(shí)別結(jié)果該算法基于 VC 平臺(tái)實(shí)現(xiàn)的,輸入的圖片是由攝像機(jī)所拍攝的普通道路圖片,實(shí)驗(yàn)結(jié)果如圖1 所示。

4.2 障礙物檢測(cè)結(jié)果

輸入的原始圖片是由雙目攝像機(jī)所拍攝的左右圖像(圖 2)

實(shí)驗(yàn)采用的是平行的攝像機(jī)模型,以右攝像機(jī)拍攝的圖像為參考圖像進(jìn)行 Canny 邊緣檢測(cè)。 圖 3為對(duì)參考圖像進(jìn)行不同閾值的邊緣檢測(cè)。

在求得每個(gè)點(diǎn)的最佳視差值之后,用該點(diǎn)的視差值來(lái)表示該點(diǎn)的像素值,形成圖像的初始視差圖,并且進(jìn)行中值濾波后期處理,效果如圖 4。

得到的初始視差圖,利用 V-視差圖和 U-視差圖后根據(jù)圖中信息計(jì)算障礙物的大小與位置。 輸入 V-視差圖和 U-視差圖后,分別計(jì)算出了高度和寬度。 如圖 5 所示。

實(shí)驗(yàn)中攝像機(jī)的焦距 30 mm,攝像機(jī)之間的基線(xiàn)距離為 200 mm,即可計(jì)算出障礙物所在位置離攝像機(jī)的距離。 算法數(shù)據(jù)與實(shí)際數(shù)據(jù)對(duì)比結(jié)果如表 1 所示。

總結(jié)

本論文中主要研究了基于雙目視覺(jué)的自動(dòng)駕駛,包括了道路識(shí)別算法、基于多閾值 Canny 的障礙物檢測(cè)和判別。

算法的處理效果比較理想,運(yùn)行處理速度在背景復(fù)雜的情況下偏慢。 研究了基于雙目視覺(jué)的自動(dòng)駕駛中障礙物識(shí)別問(wèn)題。 該算法實(shí)驗(yàn)效果較好,但由于水平方向的信息較少使得障礙物的寬度檢測(cè)結(jié)果存在一些誤差。 在后續(xù)的深入研究中,應(yīng)該把動(dòng)態(tài)障礙物檢測(cè)加入。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:基于雙目視覺(jué)的無(wú)人駕駛算法

文章出處:【微信號(hào):IV_Technology,微信公眾號(hào):智車(chē)科技】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    雙目立體視覺(jué)原理大揭秘(一)

    、分割出來(lái)。這樣就完成了特征點(diǎn)提取,為下一步“精確化數(shù)字描述”做好了基礎(chǔ)。第二、精確化數(shù)字描述(立體匹配、姿態(tài)測(cè)量)。這部分指的是分割出障礙物的特征點(diǎn)以后需要用有效的數(shù)值來(lái)描述,在雙目視覺(jué)系統(tǒng)當(dāng)然就是
    發(fā)表于 11-21 16:20

    自動(dòng)駕駛真的會(huì)來(lái)嗎?

    ,如何提高運(yùn)動(dòng)過(guò)程的機(jī)器圖像識(shí)別的準(zhǔn)確性和精度,并且建立起實(shí)時(shí)精確定位,對(duì)于自動(dòng)駕駛來(lái)說(shuō)意義重大。百度無(wú)人車(chē)實(shí)圖  硬件成本再被熱議  實(shí)際上,包英澤談到的機(jī)器視覺(jué)的“精度”問(wèn)題還與
    發(fā)表于 07-21 09:00

    基于labview機(jī)器視覺(jué)障礙物時(shí)別

    通過(guò)攝像頭對(duì)周?chē)h(huán)境信息的實(shí)時(shí)采集,如果當(dāng)鏡頭前方出現(xiàn)障礙物時(shí)候,以一定的方式(聲音或振動(dòng)之類(lèi)的)反饋出來(lái)。主要考慮的是實(shí)現(xiàn)盲人室內(nèi)導(dǎo)盲作用,不需要太過(guò)于考慮實(shí)際使用,只要能實(shí)現(xiàn)判定到障礙物自動(dòng)提醒就行啦。怎么判定前方出現(xiàn)
    發(fā)表于 03-14 07:58

    細(xì)說(shuō)關(guān)于自動(dòng)駕駛那些事兒

    展示在市區(qū)的自動(dòng)駕駛情境。這臺(tái)由光達(dá)、定位系統(tǒng)和攝影機(jī)組成的自動(dòng)駕駛車(chē),在車(chē)輛偏離車(chē)道時(shí)可自動(dòng)導(dǎo)回車(chē)道。三種系統(tǒng)的作用優(yōu)先級(jí),第一是光達(dá),不僅可以偵測(cè)障礙物,還可以“
    發(fā)表于 05-15 17:49

    基于SoC的雙目視覺(jué)ADAS解決方案

    和訓(xùn)練來(lái)完成機(jī)器學(xué)習(xí)算法,并且難以識(shí)別不規(guī)則物體;而利用毫米波雷達(dá)和激光雷達(dá)進(jìn)行測(cè)距的精度雖然較高,但是成本和難度亦較高。所以,雙目視覺(jué)的最大優(yōu)勢(shì)在于維持開(kāi)發(fā)成本較低的前提下,實(shí)現(xiàn)一定精度的目標(biāo)識(shí)別
    發(fā)表于 08-12 15:15

    激光雷達(dá)是自動(dòng)駕駛不可或缺的傳感器

    分割到底是自行車(chē)、卡車(chē)、行人還是私家車(chē)。識(shí)別之后,除了我們知道自動(dòng)駕駛本體車(chē)的速度以外,也可以跟蹤出前車(chē)的速度,以及前車(chē)距離本車(chē)的橫向和縱向距離。激光雷達(dá)輸出的已經(jīng)不是原始點(diǎn)云數(shù)據(jù),還有每個(gè)障礙物空間
    發(fā)表于 09-08 17:24

    速騰聚創(chuàng)首次發(fā)布LiDAR算法 六大模塊助力自動(dòng)駕駛

    、車(chē)道標(biāo)識(shí)線(xiàn)檢測(cè)、障礙物檢測(cè)、動(dòng)態(tài)物體跟蹤、障礙物分類(lèi)識(shí)別等六大功能模塊,有助于自動(dòng)駕駛車(chē)輛立刻獲得LiDAR感知能力。今年4月份,速騰聚創(chuàng)宣布啟動(dòng)“普羅米修斯”計(jì)劃,致力于向合作伙伴
    發(fā)表于 10-13 16:08

    用于ADAS系統(tǒng)和自動(dòng)駕駛車(chē)輛雷達(dá)的毫米波傳感器

    最近,我和我的一個(gè)朋友進(jìn)行了一次有趣的討論,他知道我在研究用于ADAS系統(tǒng)和自動(dòng)駕駛車(chē)輛(AVs)雷達(dá)的TI毫米波(mmWave)傳感器。每當(dāng)他讀到自動(dòng)駕駛汽車(chē)在不同駕駛環(huán)境下(比如
    發(fā)表于 11-09 07:48

    LabVIEW開(kāi)發(fā)自動(dòng)駕駛雙目測(cè)距系統(tǒng)

    達(dá)到950以上,而在其他較弱紋理區(qū)域也能維持在900左右。誤差率低至5%以下,甚至在特征點(diǎn)明顯的標(biāo)志上可達(dá)到2%左右。 基于LabVIEW的雙目測(cè)距系統(tǒng)在自動(dòng)駕駛具有廣泛的應(yīng)用前景
    發(fā)表于 12-19 18:02

    基于雙目視覺(jué)的移動(dòng)機(jī)器人障礙物檢測(cè)研究

    一種基于圖像分割和立體視覺(jué)相結(jié)合的障礙物檢測(cè)方法。通過(guò)分割提取出了障礙物的大致形體并濾去地面上的冗余信息,這樣就把立體視覺(jué)避障匹配區(qū)域縮小
    發(fā)表于 10-18 16:08 ?27次下載

    一種基于圖像處理的雙目視覺(jué)校準(zhǔn)方法

    雙目視覺(jué)是利用機(jī)器視覺(jué)進(jìn)行障礙物檢測(cè)的研究熱點(diǎn)。針對(duì)雙目視頻不同步,導(dǎo)致立體匹配不精準(zhǔn)的問(wèn)題,提出了一種基于圖像處理的雙目校準(zhǔn)算法。算法首先
    發(fā)表于 12-18 16:26 ?34次下載

    麻生理工開(kāi)發(fā)出成像技術(shù):可以讓自動(dòng)駕駛汽車(chē)穿過(guò)大霧看到障礙物

    麻生理工學(xué)院的研究人員表示他們已經(jīng)開(kāi)發(fā)出一種新的 成像 技術(shù),可以讓 自動(dòng)駕駛 汽車(chē)穿過(guò)大霧看到障礙物。 不管是傳統(tǒng)駕駛還是自動(dòng)駕駛,大霧天都會(huì)讓行車(chē)變得危險(xiǎn)。大多數(shù)自主導(dǎo)向系統(tǒng)使用的
    發(fā)表于 03-28 02:21 ?7857次閱讀

    NVIDIA 自動(dòng)駕駛實(shí)驗(yàn)室:基于早期網(wǎng)格融合的近距離障礙物感知

    編輯注:NVIDIA 自動(dòng)駕駛實(shí)驗(yàn)室系列視頻,將以工程技術(shù)為重點(diǎn)的視角關(guān)注實(shí)現(xiàn)自動(dòng)駕駛汽車(chē)的各個(gè)挑戰(zhàn)以及 NVIDIA DRIVE AV 軟件團(tuán)隊(duì)如何應(yīng)對(duì)這些問(wèn)題。 自動(dòng)泊車(chē)輔助系統(tǒng)在感知障礙
    的頭像 發(fā)表于 07-13 21:15 ?739次閱讀
    NVIDIA <b class='flag-5'>自動(dòng)駕駛</b>實(shí)驗(yàn)室:基于早期網(wǎng)格融合的近距離<b class='flag-5'>障礙物</b>感知

    雙目立體視覺(jué)是什么?單目視覺(jué)雙目立體視覺(jué)的區(qū)別?

    雙目更多的是基于物理測(cè)量,而單目視覺(jué)則是基于邏輯推理,通過(guò)大量的數(shù)據(jù)訓(xùn)練,先識(shí)別出目標(biāo),再根據(jù)目標(biāo)的大小和高度估算距離。因此,單目視覺(jué)的漏檢率高于
    發(fā)表于 08-17 09:40 ?3920次閱讀
    <b class='flag-5'>雙目</b>立體<b class='flag-5'>視覺(jué)</b>是什么?單<b class='flag-5'>目視覺(jué)</b>與<b class='flag-5'>雙目</b>立體<b class='flag-5'>視覺(jué)</b>的區(qū)別?

    自動(dòng)駕駛汽車(chē)如何識(shí)別障礙物

    自動(dòng)駕駛汽車(chē)識(shí)別障礙物是一個(gè)復(fù)雜而關(guān)鍵的過(guò)程,它依賴(lài)于多種傳感器和技術(shù)的協(xié)同工作。這些傳感器主要包括激光雷達(dá)(LiDAR)、雷達(dá)、攝像頭以及超聲波雷達(dá)等,它們各自具有不同的工作原理和優(yōu)勢(shì),共同為
    的頭像 發(fā)表于 07-23 16:40 ?1224次閱讀
    主站蜘蛛池模板: 欧美电影一区二区三区| 综合色图| 河南毛片| 五月网婷婷| 亚a在线| 国产99久久九九精品免费| 在线免费观看视频黄| 国模大尺度在线| 女人张开腿让男人做爽爽| 四虎影视亚洲精品| 在线亚洲成人| 欧美三四级片| 一区二区免费播放| 欧美乱妇高清无乱码| 国产午夜精品久久久久免费视小说| 亚洲免费黄色网| av在线天堂网| 成人av在线电影| 国产精品怡红院永久免费| 久久观看视频| 你懂的网站在线播放| 久久成人免费网站| 成人观看网站a| 成成人看片在线| 天天色综合5| 天天做天天爱天天射| 午夜视频精品| 亚洲伊人色一综合网| www.91在线播放| 成人久久网站| 日日做日日摸夜夜爽| 天天天色综合| 国产成人综合网在线播放| japan日韩xxxx69hd| 一二三区视频| 亚洲欧美一区二区三区麻豆| 一级毛片一级毛片一级级毛片| 在线观看国产精美视频| 三浦理惠子中文在| 碰免费人人人视频| 日本高清午夜色wwwσ|