在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

實(shí)現(xiàn)通用語言智能我們還需要什么

jmiy_worldofai ? 來源:cc ? 2019-02-14 16:49 ? 次閱讀

DeepMind新年力作《學(xué)習(xí)和評(píng)估通用語言智能》,從全新的角度對(duì)跨任務(wù)NLP模型進(jìn)行了評(píng)估,探討了要實(shí)現(xiàn)“通用語言智能”現(xiàn)如今的研究還缺失什么,以及如何實(shí)現(xiàn)通用語言智能。

2014年11月,那時(shí)候還沒有被廣泛認(rèn)知為“深度學(xué)習(xí)教父”的Geoffrey Hinton,在國(guó)外網(wǎng)站Reddit回答網(wǎng)友提問的活動(dòng)“AMA” (Ask Me Anything) 中表示,他認(rèn)為未來5年最令人激動(dòng)的領(lǐng)域,將是機(jī)器真正理解文字和視頻。

Hinton說:“5年內(nèi),如果計(jì)算機(jī)沒能做到在觀看YouTube視頻后能夠講述發(fā)生了什么,我會(huì)感到很失望。”

幸好,現(xiàn)在計(jì)算機(jī)已經(jīng)能夠在觀看一段視頻后簡(jiǎn)述其內(nèi)容,但距離Hinton所說的“真正理解文字和視頻”,還有很遠(yuǎn)的距離。

無獨(dú)有偶,統(tǒng)計(jì)機(jī)器學(xué)習(xí)大神Michael I. Jordan在2014年9月Reddit AMA中也提到,如果他有10億美金能夠組建研究項(xiàng)目,他會(huì)選擇構(gòu)建一個(gè)NASA規(guī)模的自然語言處理 (NLP) 計(jì)劃,包括語義學(xué)、語用學(xué)等分支。

Jordan說:“從學(xué)術(shù)上講,我認(rèn)為NLP是個(gè)引人入勝的問題,既讓人專注于高度結(jié)構(gòu)化的推理,也觸及了‘什么是思維 (mind)’ 這一核心,還非常實(shí)用,能讓世界變得更加美好?!?/p>

一直以來,NLP/NLU (自然語言理解) 都被視為人工智能桂冠上的明珠,不僅因其意義重大,也表示著目標(biāo)距我們遙不可及。

總之,NLP是個(gè)大難題。

前段時(shí)間在業(yè)內(nèi)廣泛流傳的一篇“人工智障”的文章,本質(zhì)上講的就是目前NLP領(lǐng)域的困境??v使有谷歌BERT模型所帶來的各項(xiàng)指標(biāo)飛躍,但要讓計(jì)算機(jī)真正“理解”人類的語言,需要的恐怕不止是時(shí)間。

在最近一篇發(fā)布在Arxiv上的論文中,DeepMind的研究人員對(duì)“通用語言智能” (General Linguistic Intelligence) 做了定義,并探討了機(jī)器如何學(xué)習(xí)并實(shí)現(xiàn)通用語言智能。

DeepMind新年力作《學(xué)習(xí)和評(píng)估通用語言智能》

實(shí)現(xiàn)通用語言智能,首先需要統(tǒng)一的評(píng)估標(biāo)準(zhǔn)

DeepMind的研究人員從語言的角度出發(fā),根據(jù)近來不斷發(fā)展的“通用人工智能”(AGI)的配套能力,也即能夠讓智能體與虛擬環(huán)境實(shí)現(xiàn)交互而發(fā)展出通用的探索、規(guī)劃和推理能力,將“通用語言智能”定義為:

能夠徹底應(yīng)對(duì)各種自然語言任務(wù)的復(fù)雜性;

有效存儲(chǔ)和重用各種表示 (representations)、組合模塊 (combinatorial modules, 如將單詞組成短語、句子和文檔的表示),以及先前獲得的語言知識(shí),從而避免災(zāi)難性遺忘;

在從未經(jīng)歷過的新環(huán)境中適應(yīng)新的語言任務(wù),即對(duì)領(lǐng)域轉(zhuǎn)換的魯棒性。

作者還指出,如今在NLP領(lǐng)域存在一種非常明顯且不好的趨勢(shì),那就是越來越多的數(shù)據(jù)集通過眾包完成,量的確是大了,特別是在體現(xiàn)人類語言的“概括” (generalization) 和“抽象” (abstraction) 能力方面大打折扣,并不貼近現(xiàn)實(shí)中的自然分布。

此外,對(duì)于某一特定任務(wù)(比如問答),存在多個(gè)不同的數(shù)據(jù)集。因此,單獨(dú)看在某個(gè)數(shù)據(jù)集上取得的結(jié)果,很容易讓我們高估所取得的進(jìn)步。

所以,要實(shí)現(xiàn)通用語言智能,或者說朝著這個(gè)方向發(fā)展,首先需要確定一個(gè)統(tǒng)一的評(píng)估標(biāo)準(zhǔn)。在本文中,為了量化現(xiàn)有模型適應(yīng)新任務(wù)的速度,DeepMind的研究人員提出了一個(gè)基于在線前序編碼 (online prequential coding) 的新評(píng)估指標(biāo)。

接下來,就讓我們看看現(xiàn)有的各個(gè)state-of-the-art模型性能如何。

對(duì)現(xiàn)有最先進(jìn)模型的“五大靈魂拷問”

作者選用了兩個(gè)預(yù)訓(xùn)練模型,一個(gè)基于BERT,一個(gè)基于ELMo。其中,BERT(base)擁有12個(gè)Transformer層,12個(gè)自注意力指針和768個(gè)隱藏層,這個(gè)預(yù)訓(xùn)練模型中有1.1億個(gè)參數(shù)。另一個(gè)則基于ELMo(base),這個(gè)預(yù)訓(xùn)練模型有將近1億個(gè)參數(shù),300個(gè)雙向LSTM層,100個(gè)輸出層。

另有BERT/ELMo(scratch),表示沒有經(jīng)過預(yù)訓(xùn)練,從頭開始的模型。

首先,作者考察了需要多少與領(lǐng)域知識(shí)相關(guān)的訓(xùn)練樣本,兩個(gè)模型才能在SQuAD閱讀理解和MNLI自然語言推理這兩個(gè)任務(wù)上取得好的表現(xiàn)。

縱軸F1代表在SQuAD閱讀理解數(shù)據(jù)集上的得分函數(shù),橫軸代表訓(xùn)練樣本量的對(duì)數(shù)值

答案是4萬。而且,與領(lǐng)域知識(shí)相關(guān)的訓(xùn)練樣本量超過4萬以后,兩個(gè)模型的提升都不明顯,非要說的話,BERT模型在兩項(xiàng)任務(wù)中比ELMo稍好一點(diǎn)。

那么,改用在其他數(shù)據(jù)集上預(yù)訓(xùn)練過的模型,同樣的任務(wù)性能又能提高多少呢?答案是一點(diǎn)點(diǎn)。但在代碼長(zhǎng)度上,預(yù)訓(xùn)練過的模型要顯著優(yōu)于沒有經(jīng)過預(yù)訓(xùn)練的模型。

預(yù)訓(xùn)練模型(+supervised)與非預(yù)訓(xùn)練模型性能比較

作者考察的第三點(diǎn)是這些模型的泛化能力。實(shí)驗(yàn)結(jié)果表明,在SQuAD數(shù)據(jù)集上表現(xiàn)最好的模型,移到其他數(shù)據(jù)集,比如Trivia、QuAC、QA-SRL、QA-ZRE后,仍然需要額外的相關(guān)訓(xùn)練樣本。這個(gè)結(jié)果在意料之中,但再次凸顯了“學(xué)會(huì)一個(gè)數(shù)據(jù)集”和“學(xué)會(huì)完成一項(xiàng)任務(wù)”之間存在的巨大鴻溝。

在SQuAD數(shù)據(jù)集上性能最優(yōu)的模型(得分超過80),在其他數(shù)據(jù)集上分?jǐn)?shù)大幅降低

最后是有關(guān)學(xué)習(xí)課程 (curriculum) 和災(zāi)難性遺忘的問題。模型忘記此前學(xué)會(huì)的語言知識(shí)有多快?學(xué)習(xí)課程的設(shè)計(jì)與模型的性能之間有什么影響?

(上)將在SQuAD數(shù)據(jù)集上訓(xùn)練好的模型改到MNLI上;(下)將在SQuAD數(shù)據(jù)集上訓(xùn)練好的模型改到TriviaQA。兩種情況模型的性能都大幅下降。

BERT模型用隨機(jī)訓(xùn)練課程在各種數(shù)據(jù)集上取得的結(jié)果。實(shí)際上經(jīng)過5萬次迭代后,模型就能基本完成各項(xiàng)任務(wù)(超過60分)。

從實(shí)驗(yàn)結(jié)果看,在SQuAD數(shù)據(jù)集上訓(xùn)練好的模型改到MNLI或TriviaQA這些不同數(shù)據(jù)集后,模型性能很快出現(xiàn)大幅下降,說明災(zāi)難性遺忘發(fā)生。

雖然采用連續(xù)學(xué)習(xí)的方法,隨機(jī)初始化,5萬次迭代后,兩個(gè)模型尤其是BERT,基本上能在各個(gè)數(shù)據(jù)集上都達(dá)到差強(qiáng)人意的表現(xiàn)。

通過隨機(jī)訓(xùn)練,20萬次迭代以后,BERT和ELMo在多項(xiàng)任務(wù)上的得分

但缺點(diǎn)是,這樣的隨機(jī)訓(xùn)練模型在開始不需要樣本,轉(zhuǎn)換新任務(wù)以后也不需要保留此前學(xué)會(huì)的東西。因此,在連續(xù)學(xué)習(xí)的過程中,知識(shí)遷移究竟是如何發(fā)生的,目前還不得而知。

綜上,對(duì)一系列在各個(gè)不同NLP任務(wù)上取得當(dāng)前最佳性能的模型進(jìn)行實(shí)證評(píng)估后,DeepMind的研究人員得出結(jié)論:雖然NLP領(lǐng)域如今在模型設(shè)計(jì)方面取得了令人矚目的進(jìn)展,而且這些模型在很多時(shí)候都能同時(shí)完成不止一項(xiàng)任務(wù),但它們?nèi)匀恍枰罅颗c領(lǐng)域知識(shí)相關(guān)的訓(xùn)練樣本 (in-domain training example),并且很容易發(fā)生災(zāi)難性遺忘。

實(shí)現(xiàn)通用語言智能,我們還需要什么?

通過上述實(shí)驗(yàn)可以發(fā)現(xiàn),現(xiàn)有的state-of-the-art NLP模型幾乎全部都是:

擁有超大規(guī)模參數(shù)的深度學(xué)習(xí)模型;

事先以監(jiān)督或非監(jiān)督的的方式在訓(xùn)練樣本上經(jīng)過訓(xùn)練;

通常包含了多個(gè)針對(duì)某項(xiàng)特定任務(wù)的構(gòu)件以完成多項(xiàng)任務(wù);

默認(rèn)或者說假設(shè)某項(xiàng)任務(wù)的數(shù)據(jù)分布是平均的。

這種方法雖然合理,但仍舊需要大量與領(lǐng)域知識(shí)相關(guān)的訓(xùn)練樣本,并且非常容易發(fā)生災(zāi)難性遺忘。

因此,要實(shí)現(xiàn)通用語言智能,DeepMind研究人員在論文最后的討論中指出,我們還需要:更加復(fù)雜的遷移學(xué)習(xí)和連續(xù)學(xué)習(xí)方法 (transfer and continual learning method),能讓模型快速跨領(lǐng)域執(zhí)行任務(wù)的記憶模塊 (memory module),訓(xùn)練課程 (training curriculum) 的選擇對(duì)模型性能的影響也很重要,在生成語言模型 (generative language models) 方面的進(jìn)展,也將有助于實(shí)現(xiàn)通用語言智能。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • DeepMind
    +關(guān)注

    關(guān)注

    0

    文章

    130

    瀏覽量

    10865
  • nlp
    nlp
    +關(guān)注

    關(guān)注

    1

    文章

    488

    瀏覽量

    22038

原文標(biāo)題:DeepMind:實(shí)現(xiàn)通用語言智能我們還缺什么?

文章出處:【微信號(hào):worldofai,微信公眾號(hào):worldofai】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    DAC5681z從FPGA讀數(shù)據(jù),為什么還需要一個(gè)DCLKP/N呢?

    以DAC5681z為例,DAC芯片從FPGA讀數(shù)據(jù),然后按照自己的采樣速率CLKIN/CLKINC 每隔16bit轉(zhuǎn)換成1個(gè)電平值,為什么還需要一個(gè)DCLKP/N呢?
    發(fā)表于 12-11 07:52

    為什么FPGA屬于硬件,還需要搞算法?

    交流學(xué)習(xí),共同進(jìn)步。 交流問題(一) Q:為什么FPGA屬于硬件,還需要搞算法? 剛?cè)腴T準(zhǔn)備學(xué)fpga但一開始學(xué)的是語法,感覺像是電路用軟件語言描述出來,fpga不用會(huì)pcb
    發(fā)表于 09-09 16:54

    含有內(nèi)部ESD保護(hù)的運(yùn)放,外部保護(hù)還需要加嗎?

    含有內(nèi)部ESD保護(hù)的運(yùn)放,外部保護(hù)還需要加嗎?因?yàn)榧油獠縀SD保護(hù)有一定的漏電流存在, 這個(gè)會(huì)使電路失去一定的精度
    發(fā)表于 09-04 06:54

    暢玩《黑神話:悟空》,除了“官配”硬件還需要注意這些......

    暢玩《黑神話:悟空》,除了“官配”硬件還需要注意這些......
    的頭像 發(fā)表于 08-30 14:58 ?449次閱讀
    暢玩《黑神話:悟空》,除了“官配”硬件<b class='flag-5'>還需要</b>注意這些......

    想用OPA134單電源放大MIC信號(hào),單電源3.3V供電,幫忙看看哪里還需要修改一下?

    想用OPA134單電源放大MIC信號(hào)(智能設(shè)備),單電源3.3V供電,幫忙看看哪里還需要修改一下,謝謝! 在MIC_P上有1uF的隔直電容,這邊沒顯示,濾除MIC bais上的直流電流。
    發(fā)表于 08-28 06:06

    有了MES、ERP,為什么還需要QMS?

    ? 有了MES、ERP,質(zhì)量管理為什么還需要QMS? ?在制造業(yè),質(zhì)量管理始終是企業(yè)管理中永恒的主題。品質(zhì)管理要想做得更好,企業(yè)必須掌握足夠多、足夠有用的數(shù)據(jù)和信息,實(shí)現(xiàn)質(zhì)量管理信息化。很多中小企業(yè)
    的頭像 發(fā)表于 08-02 10:09 ?287次閱讀
    有了MES、ERP,為什么<b class='flag-5'>還需要</b>QMS?

    AI智能眼鏡都需要什么芯片

    國(guó)內(nèi)的廠家又該如何跟上這一潮流趨勢(shì)?那咱們國(guó)內(nèi)廠商的AI智能眼鏡究竟需要什么樣的芯片來支撐它的運(yùn)行呢?如果你對(duì)以上問題感興趣的話就來聽我嘮嘮吧。接下來介紹設(shè)計(jì)AI智
    的頭像 發(fā)表于 07-11 08:17 ?1265次閱讀
    AI<b class='flag-5'>智能</b>眼鏡都<b class='flag-5'>需要什么</b>芯片

    大數(shù)據(jù)起步之前我們還需要注意些什么?

    超級(jí)傳感器的企業(yè)就意味著其掌握了對(duì)大數(shù)據(jù)應(yīng)用至關(guān)重要的用戶信息數(shù)據(jù)。那么,在真正開始其大數(shù)據(jù)應(yīng)用之前,我們還需要在起步時(shí)注意些什么? 創(chuàng)意比技術(shù)更重要 在談到大數(shù)據(jù)時(shí)很多人會(huì)把它看作是一個(gè)技術(shù)問題,其實(shí)這是
    的頭像 發(fā)表于 07-10 14:51 ?319次閱讀

    BLE MESH console用例跑起來,除了開發(fā)板、串口線、小燈還需要什么外設(shè)嗎?

    BLE MESH console用例跑起來,除了開發(fā)板、串口線、小燈還需要什么外設(shè)嗎?其次是輸入命令行的窗口是不是執(zhí)行idf build的窗口?最后就是能輸入的命令行是否在ble_mesh_commands_README.md中,我嘗試輸入第一個(gè)Example: bmreg,顯示沒有此條命令?
    發(fā)表于 06-21 15:27

    在freertos中,每個(gè)任務(wù)都是一個(gè)死循環(huán),那么還需要使用看門狗嗎?

    在freertos中,每個(gè)任務(wù)都是一個(gè)死循環(huán),那么還需要使用看門狗嗎?該怎么使用?
    發(fā)表于 05-07 06:55

    fpga通用語言是什么

    FPGA(現(xiàn)場(chǎng)可編程門陣列)的通用語言主要是指用于描述FPGA內(nèi)部邏輯結(jié)構(gòu)和行為的硬件描述語言。目前,Verilog HDL和VHDL是兩種最為廣泛使用的FPGA編程語言
    的頭像 發(fā)表于 03-15 14:36 ?515次閱讀

    請(qǐng)問risc-v中斷還需要軟件保存上下文和恢復(fù)嗎?

    risc-v中斷還需要軟件保存上下文和恢復(fù)嗎?
    發(fā)表于 02-26 07:40

    #2024,立Flag了嘛? #學(xué)習(xí)spinal HDL還需要學(xué)習(xí)對(duì)應(yīng)的Scala語言

    學(xué)習(xí)spinal HDL還需要學(xué)習(xí)對(duì)應(yīng)的Scala語言,但是spinal HDL直接貼近硬件編程,不知道對(duì)于學(xué)習(xí)spinal HDL有什么好的建議?
    發(fā)表于 01-21 11:11

    aducm410微處理器還需要接外部晶振和復(fù)位電路嗎?

    aducm410微處理器還需要接外部晶振和復(fù)位電路嗎?
    發(fā)表于 01-11 07:23

    1200控制V90PN,極限開關(guān)接到伺服上,那PLC這邊還需要組嗎?

    1200控制V90PN,極限開關(guān)接到伺服上,那PLC這邊還需要組嗎 接到V90上,假如絕對(duì)定位碰到極限,伺服自己會(huì)停止嗎
    發(fā)表于 01-09 08:26
    主站蜘蛛池模板: 222网站高清免费观看| 国产精品性| 992tv国产精品福利在线| 22eee在线播放成人免费视频| 一级日本大片免费观看视频| 1024国产看片在线观看| 视频在线视频免费观看| 天堂一区二区三区在线观看| 狠狠干精品| 婷婷激情六月| 欧美色综合高清视频在线| 极品啪啪| 亚洲黄色网址| 久久久香蕉视频| 69日本人xxxx16-18| 手机免费看a| 久久网站免费观看| 亚洲夜夜操| 国产爱v| 亚洲欧美视频在线观看| 亚洲 欧洲 另类 综合 自拍| 日本拍拍| 国产精品久久久久久久久| 五月天婷婷社区| 成年女人毛片| 国产精品久久免费观看| 老汉影视永久免费视频| 在线观看永久免费| 国产伦精品一区二区三区四区| 一区二区三区网站在线免费线观看 | lsj老司机精品视频在线观看| 亚洲ay| 97午夜理伦片在线影院| 精品在线一区二区三区| 国内黄色录像| 日本不卡一区| 色婷婷成人| 成人免费无毒在线观看网站| 视频免费观看网址| 亚洲一区三区| 色色视频免费网|