雷擊浪涌的防護
1、電子設備雷擊浪涌抗擾度試驗標準
電子設備雷擊浪涌抗擾度試驗的國家標準為GB/T17626.5(等同于國際標準IEC61000-4-5)。
標準主要是模擬間接雷擊產生的各種情況:
(1)雷電擊中外部線路,有大量電流流入外部線路或接地電阻,因而產生的干擾電壓。
(2)間接雷擊(如云層間或云層內的雷擊)在外部線路上感應出電壓和電流。
(3)雷電擊中線路鄰近物體,在其周圍建立的強大電磁場,在外部線路上感應出電壓。
(4)雷電擊中鄰近地面,地電流通過公共接地系統時所引進的干擾。
標準除了模擬雷擊外,還模擬變電所等場合,因開關動作而引進的干擾(開關切換時引起電壓瞬變),如:
(2)同一電網,在靠近設備附近的一些較小開關跳動時的干擾。
(3)切換伴有諧振線路的晶閘管設備。
(4)各種系統性的故障,如設備接地網絡或接地系統間的短路和飛弧故障。
標準描述了兩種不同的波形發生器:
一種是雷擊在電源線上感應生產的波形;
另一種是在通信線路上感應產生的波形。
這兩種線路都屬于空架線,但線路的阻抗各不相同:在電源線上感應產生的浪涌波形比較窄一些(50uS),前沿要陡一些(1.2uS);而在通信線上感應產生的浪涌波形比較寬一些,但前沿要緩一些。后面我們主要以雷擊在電源線上感應生產的波形來對電路進行分析,同時也對通信線路的防雷技術進行簡單介紹。
2、模擬雷擊浪涌脈沖生成電路的工作原理
上圖是模擬雷電擊到配電設備時,在輸電線路中感應產生的浪涌電壓,或雷電落地后雷電流通過公共地電阻產生的反擊高壓,的脈沖產生電路。4kV時的單脈沖能量為100焦耳。
圖中Cs是儲能電容(大約為10uF,相當于雷云電容);
Us為高壓電源;
Rc為充電電阻;
Rs為脈沖持續時間形成電阻(放電曲線形成電阻);
Rm為阻抗匹配電阻Ls為電流上升形成電感。
雷擊浪涌抗擾度試驗對不同產品有不同的參數要求,上圖中的參數可根據產品標準要求不同,稍有改動。
基本參數要求:
(1)開路輸出電壓:0.5~6kV,分5等級輸出,最后一級由用戶與制造商協商確定;
(2)短路輸出電流:0.25~2kA,供不同等級試驗用;
(3)內阻:2歐姆,附加電阻10、12、40、42歐姆,供其它不同等級試驗用;
(4)浪涌輸出極性:正/負;浪涌輸出與電源同步時,移相0~360度;
(5)重復頻率:至少每分鐘一次。
雷擊浪涌抗擾度試驗的嚴酷等級分為5級:
1級:較好保護的環境;
2級:有一定保護的環境;
3級:普通的電磁騷擾環境、對設備未規定特殊安裝要求,如工業性的工作場所;
4級:受嚴重騷擾的環境,如民用空架線、未加保護的高壓變電所。
X級:由用戶與制造商協商確定。
圖中18uF電容,可根據嚴酷等級不同,選擇數值也可不同,但大到一定值之后,基本上就沒有太大意義。
10歐姆電阻以及9uF電容,可根據嚴酷等級不同,選擇數值也不同,電阻最小值可選為0歐姆(美國標準就是這樣),9uF電容也可以選得很大,但大到一定值之后,基本上就沒有太大意義。
3、共模浪涌抑制電路
防浪涌設計時,假定共模與差模這兩部分是彼此獨立的。然而,這兩部分并非真正獨立,因為共模扼流圈可以提供相當大的差模電感。這部分差模電感可由分立的差模電感來模擬。為了利用差模電感,在設計過程中,共模與差模不應同時進行,而應該按照一定的順序來做。首先,應該測量共模噪聲并將其濾除掉。采用差模抑制網絡(DifferentialModeRejectionNetwork),可以將差模成分消除,因此就可以直接測量共模噪聲了。如果設計的共模濾波器要同時使差模噪聲不超過允許范圍,那么就應測量共模與差模的混合噪聲。因為已知共模成分在噪聲容限以下,因此超標的僅是差模成分,可用共模濾波器的差模漏感來衰減。對于低功率電源系統,共模扼流圈的差模電感足以解決差模輻射問題,因為差模輻射的源阻抗較小,因此只有極少量的電感是有效的。
對4000Vp以下的浪涌電壓進行抑制,一般只需采用LC電路進行限流和平滑濾波,把脈沖信號盡量壓低到2~3倍脈沖信號平均值的水平即可。由于L1、L2有50周電網電流流過,電感很容易飽和,因此,L1、L2一般都采用一種漏感很大的共模電感。
用在交流,直流的都有,通常我們在電源EMI濾波器,開關電源中常見到,而直流側少見,在汽車電子中能夠看到用在直流側。加入共模電感是為了消除并行線路上的共模干擾(有兩線的,也有多線的)。由于電路上兩線阻抗的不平衡,共模干擾最終體現在差模上。用差模濾波方法很難濾除。共模電感到底需要用在哪。共模干擾通常是電磁輻射,空間耦合過來的,那么無論是交流還是直流,你有長線傳輸,就涉及到共模濾波就得加共模電感。例如:USB線好多就在線上加磁環。開關電源入口,交流電是遠距離傳輸過來的,就需要加。通常直流側不需要遠傳就不需要加了。沒有共模干擾,加了就是浪費,對電路沒有增益。
電源濾波器的設計通常可從共模和差模兩方面來考慮。共模濾波器最重要的部分就是共模扼流圈,與差模扼流圈相比,共模扼流圈的一個顯著優點在于它的電感值極高,而且體積又小,設計共模扼流圈時要考慮的一個重要問題是它的漏感,也就是差模電感。通常,計算漏感的辦法是假定它為共模電感的1%,實際上漏感為共模電感的0.5%~4%之間。在設計最優性能的扼流圈時,這個誤差的影響可能是不容忽視的。
漏感的重要性漏感是如何形成的呢?緊密繞制,且繞滿一周的環形線圈,即使沒有磁芯,其所有磁通都集中在線圈“芯”內。但是,如果環形線圈沒有繞滿一周,或者繞制不緊密,那么磁通就會從芯中泄漏出來。這種效應與線匝間的相對距離和螺旋管芯體的磁導率成正比。共模扼流圈有兩個繞組,這兩個繞組被設計成使它們所流過的電流沿線圈芯傳導時方向相反,從而使磁場為0。如果為了安全起見,芯體上的線圈不是雙線繞制,這樣兩個繞組之間就有相當大的間隙,自然就引起磁通“泄漏”,這即是說,磁場在所關心的各個點上并非真正為0。共模扼流圈的漏感是差模電感。事實上,與差模有關的磁通必須在某點上離開芯體,換句話說,磁通在芯體外部形成閉合回路,而不僅僅只局限在環形芯體內。
一般CX電容可承受4000Vp的差模浪涌電壓沖擊,CY電容可承受5000Vp的共模電壓沖擊。正確選擇L1、L2和CX2、CY參數的大小,就可以抑制4000Vp以下的共模和差模浪涌電壓。但如果兩個CY電容是安裝在整機線路之中,其總容量不能超過5000P,如要抑制浪涌電壓超過4000Vp,還需選用耐壓更高的電容器,以及帶限幅功能的浪涌抑制電路。
所謂抑制,只不過是把尖峰脈沖的幅度降低了一些,然后把其轉換成另一個脈沖寬度相對比較寬,幅度較為平坦的波形輸出,但其能量基本沒有改變。
兩個CY電容的容量一般都很小,存儲的能量有限,其對共模抑制的作用并不很大,因此,對共模浪涌抑制主要靠電感L1和L2,但由于L1、L2的電感量也受到體積和成本的限制,一般也難以做得很大,所以上面電路對雷電共模浪涌電壓抑制作用很有限。
圖(a)中L1與CY1、L2與CY2,分別對兩路共模浪涌電壓進行抑制,計算時只需計算其中一路即可。?對L1進行精確計算,須要求解一組2階微分方程,結果表明:電容充電是按正弦曲線進行,放電是按余弦曲線進行。但此計算方法比較復雜,這里采用比較簡單的方法。
假說,共模信號是一個幅度為Up、寬度為τ的方波,以及CY電容兩端的電壓為Uc,測流過電感的電流為一寬度等于2τ的鋸齒波:
流過電感的電流為:
流過電感的最大電流為:
在2τ期間流過電感的平均電流為:
由此可以求得CY電容在2τ期間的電壓變化量為:
上面公式是計算共模浪涌抑制電路中電感L和電容CY參數的計算公式,式中,Uc為CY電容兩端的電壓,也是浪涌抑制電路的輸出電壓,?Uc為CY電容兩端的電壓變化量,但由于雷電脈沖的周期很長,占空比很小,可以認為Uc=?Uc,Up為共模浪涌脈沖的峰值,q為CY電容存儲的電荷,τ為共模浪涌脈沖的寬度,L為電感,C為電容。
根據上面公式,假設浪涌峰值電壓Up=4000Vp,電容C=2500p,浪涌抑制電路的輸出電壓Uc=2000Vp,則需要電感L的數值為1H。顯然這個數值非常大,在實際中很難實現,所以上面電路對雷電共模抑制的能力很有限,此電路還需進一步改進。
差模浪涌電壓抑制,主要是靠圖中的濾波電感L1、L2,和濾波電容CX,L1、L2濾波電感和CX濾波電容等參數的選擇,同樣可以用下面公式來進行計算。
但上式中的L應該等于L1和L2兩個濾波電感之和,C=CX,Uc等于差模抑制輸出電壓。一般,差模抑制輸出電壓應不大于600Vp,因為很多半導體器件和電容的最大耐壓都在此電壓附近,并且,經過L1和L2兩個濾波電感以及CX電容濾波之后,雷電差模浪涌電壓的幅度雖然降低了,但能量基本上沒有降低,因為經過濾波之后,脈沖寬度會增加,一旦器件被擊穿,大部分都無法恢復到原來的狀態。
根據上面公式,假設浪涌峰值電壓Up=4000Vp,脈沖寬度為50uS,差模浪涌抑制電路的輸出電壓Uc=600Vp,則需要LC的數值為14mH×uF。顯然,這個數值對于一般電子產品的浪涌抑制電路來說還是比較大的,相比之下,增加電感量要比增加電容量更有利,因此最好選用一種有3個窗口、用矽鋼片作鐵芯,電感量相對較大(大于20mH)的電感作為浪涌電感,這種電感共模和差模電感量都很大,并且不容易飽和。順便指出,整流電路后面的電解濾波電容,同樣也具有抑制浪涌脈沖的功能,如果把此功能也算上,其輸出電壓Uc就不能選600Vp,而只能選為電容器的最高耐壓Ur(400Vp)。
4、雷擊浪涌脈沖電壓抑制常用器件
避雷器件主要有陶瓷氣體放電管、氧化鋅壓敏電阻、半導體閘流管(TVS)、浪涌抑制電感線圈、X類浪涌抑制電容等,各種器件要組合使用。
氣體放電管的種類很多,放電電流一般都很大,可達數十kA,放電電壓比較高,放電管從點火到放電需要一定的時間,并且存在殘存電壓,性能不太穩定;氧化鋅壓敏電阻伏安特性比較好,但受功率的限制,電流相對比放電管小,多次被雷電過流擊穿后,擊穿電壓值會下降,甚至會失效;半導體TVS管伏安特性最好,但功率一般都很小,成本比較高;浪涌抑制線圈是最基本的防雷器件,為防流過電網交流電飽和,必須選用三窗口鐵芯;X電容也是必須的,要選用容許紋波電流較大的電容。
氣體放電管
氣體放電管指作過電壓保護用的避雷管或天線開關管一類,管內有二個或多個電極,充有一定量的惰性氣體。氣體放電管是一種間隙式的防雷保護元件,它用在通信系統的防雷保護。
放電管的工作原理是氣體間隙放電i當放電管兩極之間施加一定電壓時,便在極間產生不均勻電場:在此電場作用下,管內氣體開始游離,當外加電壓增大到使極間場強超過氣體的絕緣強度時,兩極之間的間隙將放電擊穿,由原來的絕緣狀態轉化為導電狀態,導通后放電管兩極之間的電壓維持在放電弧道所決定的殘壓水平,這種殘壓一般很低,從而使得與放電管并聯的電子設備免受過電壓的損壞。
氣體放電管有的是以玻璃作為管子的封裝外殼.也有的用陶瓷作為封裝外殼,放電管內充入電氣性能穩定的惰性氣體(如氬氣和氖氣等),常用放電管的放電電極一般為兩個、三個,電極之間由惰性氣體隔開。按電極個數的設置來劃分,放電管可分為二極、三極放電管。
陶瓷二極放電管由純鐵電極、鎳鉻鈷合金帽、銀銅焊帽和陶瓷管體等主要部件構成。管內放電電極上涂覆有放射性氧化物,管體內壁也涂覆有放射性元素,用于改善放電特性。放電電極主要有桿形和杯形兩種結構,在桿形電極的放電管中,電極與管體壁之間還要加裝一個圓筒熱屏,該熱屏可以使陶瓷管體受熱趨于均勻,不致出現局部過熱而引起管斷裂。熱屏內也涂覆放射性氧化物,以進一步減小放電分散性。在杯形電極的放電管中,杯口處裝有鉬網,杯內裝有銫元素,其作用也是減小放電分散性。
三極放電管也是由純鐵電極、鎳鉻鈷合金帽、銀銅焊帽和陶瓷管體等部件構成。與二極放電管不同,在三極放電管中增加了鎳鉻鈷合金圓筒,作為第三極,即接地電極。
主要參數:
(1)直流擊穿電壓。此值由施加一個低上升速率(dv/dt=100V/s)的電壓值來決定。
(2)沖擊(或浪涌)擊穿電壓。它代表放電管的動態特性,常用上升速率為dv/dt=1kV/us的電壓值來決定。
(3)標稱沖擊放電電流。8/20us波形(前沿8us,半峰持續時間20us)的額定放電電流,通常放電10次。
(4)標準放電電流。通過50Hz交流電流的額定有效值,規定每次放電的時間為1s,放電10次。
(5)最大單次沖擊放電電流。對8/20us電流波的單次最大放電電流。
(6)耐工頻電流值。對8/20us電流波的單次最大放電電流。對50Hz交流電,能經受連續9個周波的最大電流的有效值。
(7)絕緣電阻。對8/20us電流波的單次最大放電電流。對50Hz交流電,能經受連續9個周波的最大電流的有效值。
(8)電容。放電管電極間的電容,一般在2~10pF之間,是所有瞬變干擾吸收器件中最小的。
金屬氧化物壓敏電阻
壓敏電阻一般都是以氧化鋅為主要成分,另加少量的其它金屬氧化物(顆粒),如:鈷、猛、鉍等壓制而成。由于兩種不同性質的物體組合在一起,相當于一個PN結(二極管),因此,壓敏電阻相當于眾多的PN結串、并聯組成。
5、超高浪涌電壓抑制電路
實例1
上圖是一個可抗擊較強雷電浪涌脈沖電壓的電原理圖,圖中:G1、G2為氣體放電管,主要用于對高壓共模浪涌脈沖抑制,對高壓差模浪涌脈沖也同樣具有抑制能力;VR為壓敏電阻,主要用于對高壓差模浪涌脈沖抑制。經過G1、G2和VR抑制后,共模和差模浪涌脈沖的幅度和能量均大幅度降低。
G1、G2的擊穿電壓可選1000Vp~3000Vp,VR的壓敏電壓一般取工頻電壓最大值的1.7倍。
G1、G2擊穿后會產生后續電流,一定要加保險絲以防后續電流過大使線路短路。
實例2
增加了兩個壓敏電阻VR1、VR2和一個放電管G3,主要目的是加強對共模浪涌電壓的抑制,由于壓敏電阻有漏電流,而一般電子產品都對漏電流要求很嚴格(小于0.7mAp),所以圖中加了一個放電管G3,使平時電路對地的漏電流等于0。G3的擊穿電壓要遠小于G1、G2的擊穿電壓,采用G3對漏電隔離后,壓敏電阻VR1或VR2的擊穿電壓可相應選得比較低,VR1、VR2對差模浪涌電壓也有很強的抑制作用。
實例3
G1是一個三端放電管,它相當于把兩個二端放電管安裝在一個殼體中,用它可以代替上面兩個實例中的G1、G2放電管。除了二端、三端放電管之外,放電管還有四端、五端的,各放電管的用途也不完全相同。
實例4
增加了兩個壓敏電阻(VR1、VR2),主要目的是為了隔斷G1擊穿后產生的后續電流,以防后續電流過大使輸入電路短路,但由于VR1、VR2的最大峰值電流一般只有G1的幾十分之一,所以,本實例對超高浪涌電壓的抑制能力相對實例3要的抑制能力差很多。
實例5直接在PCB板上制作避雷裝置
在PCB板上直接制作放電避雷裝置,可以代替防雷放電管,可以抑制數萬伏共模或差模浪涌電壓沖擊,避雷裝置電極之間距離一般要求比較嚴格,輸入電壓為AC110V時,電極之間距離可選4.5mm,輸入電壓為AC220V時,可選6mm;避雷裝置的中間電極一定要接到三端電源線與PCB板連接的端口上。
實例6 PCB板氣隙放電裝置代替放電管
在PCB板上直接制作氣隙放電裝置,正常放電電壓為每毫米1000~1500V,4.5mm爬電距離的放電電壓大約為4500~6800Vp,6mm爬電距離的放電電壓大約為6000~9000Vp。
6、各種防雷器件的連接
避雷器件的安裝順序不能搞錯,放電管必須在最前面,其次是浪涌抑制電感和壓敏電阻(或放電管),再其次才是半導體TVS閘流管或X類電容及Y類電容。
-
電源
+關注
關注
184文章
17740瀏覽量
250529 -
浪涌
+關注
關注
3文章
256瀏覽量
28545 -
差模電感
+關注
關注
3文章
42瀏覽量
4714
原文標題:浪涌(2)雷擊浪涌的防護
文章出處:【微信號:EngicoolArabic,微信公眾號:電子工程技術】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論