在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習、CNN越來越火熱,這種熱度能夠持續多久?

DPVg_AI_era ? 來源:lp ? 2019-05-01 09:06 ? 次閱讀

本文介紹了LeCun和居里夫人、以及原子發展和AI發展的共通之處,試圖回答:人工智能處于何種發展階段、是否會有危險、以及YannLeCun是新的RichardFeymann,還是新的MarieCurie,或兩者兼而有之?

深度學習、CNN越來越火熱,原因之一是它取得了很多令人矚目的成就。不過,這種熱度能夠持續多久?深度學習是否在未來幾年仍然能夠推動人工智能呈指數級增長?恐怕需要我們仔細去思考一下。

美國未來研究院主席羅伊·阿馬拉有一條著名的阿馬拉定律:“我們傾向于過高估計技術在短期內的影響,而低估它的長期效應”。

所以,深度學習到底是被高估還是低估,就得搞清楚目前深度學習和人工智能發展到了什么程度,站在哪個階段上。

Gartner熱度循環曲線

上圖中的曲線反應了一項技術在5到10年內關注度的變化,可供企業用來評估該項技術的發展階段,從而決定是否采用該技術、何時使用等。不過人工智能不僅僅是一項應用于企業的技術,同時是一個獨立的科學領域,它的熱度周期可能長達50到100。

觀察人工智能發展走向的一種方法是將其看做是人類對自我認知的理解,對人類學習系統的探索。從這個角度切入,就可以將我們在人工智能領域的發現,與過去的科學發現進行比較,特別是那些與復雜系統有關的發現:太陽系,進化,電力…以及,原子。

接下來,我們來通過解答一個有趣的問題來嘗試揭開當前人工智能的發展階段,以及30年后我們的后代回顧歷史會對現在我們做的事情做出何種評價:天真?還是危險?

這個問題就是:深度學習大牛、CNN之父YannLeCun是AI領域的費曼,還是居里夫人,或兩者兼而有之?

核物理簡史

要解答上述問題,需要對核物理的歷史做一個簡單的梳理。

研究鈾鹽磷光現象的Becquerel于1897年偶然發現了鈾的放射性,鈾被光照后擁有了發射X射線的能力,接著他很快就發現鈾不需要外部能源也能發射X射線。之后居里夫人更精心地研究了放射性,并研究了除鈾以外的其他天然放射性化合物。

放射性的發現引起了公眾的熱情;與此同時,放射性是一種新的現象,需要通過理論研究和對原子本身的更好理解來解釋。

愛因斯坦在1905年提出了著名的質能等價理論,盧瑟福在幾年后通過實驗用電子轟擊金屬板,確定了原子的第一個模型:有核和電子軌道。

這個不完整的原子模型一直沿用了15年。直到1928年現代普遍接受的“自旋”模型的出現,以及1935年強核力理論的提出。

在強核力理論提出4年后,放射性元素第一次落地應用,科學家使用同位素成功進行了癌癥化療;隨后,1942年建立了第一個研究核反應堆,1956年建成第一座全規模核能發電廠。

從1897年發現發射線元素,到成功實現落地應用,歷時近半個世紀。

人工神經網絡是如何開始的

神經網絡的概念很早就有了,最初的動機是編寫一種模仿突觸行為的算法。在1957年討論了第一個感知器,1965年討論了第一個多層感知器。

而那個時候的計算機剛剛開始發展,速度非常慢,最簡單的網絡也得數天才能訓練完畢,效率極其低下,因此在接下來的十幾年都沒有被大量使用。

第一個轉機出現在1974年,Werbos發現了反向傳播。反向傳播使用了神經網絡操作具有差異性和可投射性的特點,當網絡出錯時,可以將錯誤本身回溯到網絡的各層,以幫助它自我糾正。從某種意義上說,它是我們今天稱之為深度學習的開始。

幾年后,KunihikoFukushima推出了Neocognitron,靈感來自視覺皮層中感知細胞的工作模式。有了Neocognitron,才有了后來廣為人知的CNN。

神經網絡的重大發展,源自算力的提升,這要感謝現代GPU、TPU等。

YannLeCun:讓人工智能看到了一束光

在YannLeCun將神經網絡第一次落地之前,AI正在經歷漫長的寒冬期。

YannLeCun通過反向傳播和CNN來識別用于郵件路由的郵件上的郵政編碼,雖然結果喜人,然而距離深度學習成為主流還需要20年左右的時間。

三個G:Google,GAN和GPU

2014年,IanGoodfellow與蒙特利爾大學的同事們在酒吧里激烈爭吵。有關自動生成逼真圖像的能力以及如何教導神經網絡做到這一點。喝大了的Ian誕生了一個瘋狂想法,讓兩個神經網絡互毆,第一個網絡生成圖像,第二個網絡“調教”第一個。

現在仍然不清為什么讓兩個神經網絡并行運行會有效,這個問題仍然亟待解決。GAN是過去幾年出現的有關機器學習的一個例子,但其他包括:

學習(可解釋以及好奇心)人工智能系統本身缺乏好奇心,不會學到新東西,缺乏可解釋性

深度雙重Q-Learning(DDQN),深度學習網絡嘗試去學會一個策略(例如,玩AtariPong)。兩個網絡分別評估特定步驟是否智能和相互關聯的結果

YOLO(You Look Only Once)對象檢測算法,以奇怪的方式檢測圖像中的對象,但速度超快

回顧有關人工智能的各種概念的提出,例如反向傳播、CNN、GAN,RNN,LTSM等,可以和原子的發展歷程進行類比。

Atom和DeepLearning/AI

30年后的人工智能

未來很難預測,不過可以通過根據過去的科學發現,嘗試做出一些假設,并找出真正在AI上取得重大進展需要做些什么:

更多理論:人工智能現在階段,類似自旋模型出現之前的階段。

也許未來可能建立一個適用的學習理論,其中包含驅動因素(如好奇心,概括能力等),并將這些概念融合在一起

更多工業化:工程領域需要通用以及可重用的組件。這一點已經從核工業中得到證實。在深度學習中,嵌入和可重用的表示正在成為一種趨勢

更多落地商用:人工智能目前主要在虛擬世界、而非真實世界中運行,這限制了它的一些實際應用。一些新出現的概念,例如“數字孿生工廠”,人工智能可以在其上運行并進行優化的見解

更多硬件:放射性是在建造靜電計的時候偶然發現的。而AI是在當前硬件(包括GPU和TPU)上開發的,所以,未來可能需要量子計算機

如果至少上述任何兩個“預測”都成為現實,30年后當我們的后代回顧21世紀初的深度學習研究領域是,可能會說:是的,也許YannLeCun是AI領域的居里夫人!

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1792

    文章

    47514

    瀏覽量

    239232
  • 深度學習
    +關注

    關注

    73

    文章

    5510

    瀏覽量

    121343
  • cnn
    cnn
    +關注

    關注

    3

    文章

    353

    瀏覽量

    22267

原文標題:Yan LeCun會是AI界的居里夫人嗎?

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    NPU在深度學習中的應用

    設計的硬件加速器,它在深度學習中的應用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對深度學習算法優化的處理器,它與傳統的CPU和GPU有所不同。NPU通常具有高度并行的處理能
    的頭像 發表于 11-14 15:17 ?727次閱讀

    我們的城市為什么越來越熱?

    全球氣候在變暖,我們焚燒石油,煤炭等化石燃料,產生了大量二氧化碳等溫室氣體,導致全球氣候變暖,尤其大陸氣溫升高,城市變得越來越熱。圖:上海前灘的夜晚,被太陽曬熱的建筑熱島效應夏天天太熱,在陽光
    的頭像 發表于 08-03 08:14 ?588次閱讀
    我們的城市為什么<b class='flag-5'>越來越</b>熱?

    深度學習中的無監督學習方法綜述

    應用中往往難以實現。因此,無監督學習深度學習中扮演著越來越重要的角色。本文旨在綜述深度學習中的
    的頭像 發表于 07-09 10:50 ?847次閱讀

    CNN在多個領域中的應用

    ,通過多層次的非線性變換,能夠捕捉到數據中的隱藏特征;而卷積神經網絡(CNN),作為神經網絡的一種特殊形式,更是在圖像識別、視頻處理等領域展現出了卓越的性能。本文旨在深入探究深度學習
    的頭像 發表于 07-08 10:44 ?2045次閱讀

    深度學習在視覺檢測中的應用

    深度學習是機器學習領域中的一個重要分支,其核心在于通過構建具有多層次的神經網絡模型,使計算機能夠從大量數據中自動學習并提取特征,進而實現對復
    的頭像 發表于 07-08 10:27 ?796次閱讀

    基于深度學習的小目標檢測

    在計算機視覺領域,目標檢測一直是研究的熱點和難點之一。特別是在小目標檢測方面,由于小目標在圖像中所占比例小、特征不明顯,使得檢測難度顯著增加。隨著深度學習技術的快速發展,尤其是卷積神經網絡(CNN
    的頭像 發表于 07-04 17:25 ?988次閱讀

    cnn卷積神經網絡分類有哪些

    卷積神經網絡(CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等領域。本文將詳細介紹CNN在分類任務中的應用,包括基本結構、關鍵技術、常見網絡架構以及實際應用案例。
    的頭像 發表于 07-03 09:28 ?670次閱讀

    cnn卷積神經網絡三大特點是什么

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。CNN具有以下三大特點: 局
    的頭像 發表于 07-03 09:26 ?1450次閱讀

    深度學習與卷積神經網絡的應用

    隨著人工智能技術的飛速發展,深度學習和卷積神經網絡(Convolutional Neural Network, CNN)作為其中的重要分支,已經在多個領域取得了顯著的應用成果。從圖像識別、語音識別
    的頭像 發表于 07-02 18:19 ?964次閱讀

    卷積神經網絡cnn模型有哪些

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。 CNN的基本概念 1.1
    的頭像 發表于 07-02 15:24 ?766次閱讀

    深度神經網絡模型cnn的基本概念、結構及原理

    深度神經網絡模型CNN(Convolutional Neural Network)是一種廣泛應用于圖像識別、視頻分析和自然語言處理等領域的深度學習模型。 引言
    的頭像 發表于 07-02 10:11 ?9850次閱讀

    基于Python和深度學習CNN原理詳解

    卷積神經網絡 (CNN) 由各種類型的層組成,這些層協同工作以從輸入數據中學習分層表示。每個層在整體架構中都發揮著獨特的作用。
    的頭像 發表于 04-06 05:51 ?2216次閱讀
    基于Python和<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的<b class='flag-5'>CNN</b>原理詳解

    嵌入式會越來越卷嗎?

    以及大數據處理等技術之間的整合與互動可能會越來越密切。這種融合或許會帶來更強大的系統和更廣泛的應用,但也會帶來新的挑戰,如數據安全性和系統穩定性等問題。 嵌入式系統的“卷”涵蓋了技術、應用和發展等多方面
    發表于 03-18 16:41

    我們該如何應對SOC中越來越龐大和復雜的SDC約束?

    SOC設計變得越來越復雜,成本越來越高,設計和驗證也越來越困難。
    的頭像 發表于 03-13 14:52 ?1229次閱讀
    我們該如何應對SOC中<b class='flag-5'>越來越</b>龐大和復雜的SDC約束?

    IC datasheet為什么越來越薄了?

    剛畢業的時候IC spec動則三四百頁甚至一千頁,這種設置和使用方法很詳盡,但是這幾年IC datasheet為什么越來越薄了,還分成了IC功能介紹、code設置、工廠量產等等規格書,很多東西都藏著掖著,想了解個IC什么東西都要發郵件給供應商,大家有知道這事為什么的嗎?
    發表于 03-06 13:55
    主站蜘蛛池模板: 四虎国产精品成人永久免费影视| 日本不卡视频免费的| 5月色婷婷| 午夜影视免费观看| 视频在线观看免费| 黄色大毛片| 国产一级特黄生活片| 日本黄色免费观看| 亚洲成人激情片| 四虎影在永久地址在线观看| 成人国产三级精品| 亚洲精品成人a在线观看| 99 久久99久久精品免观看| 一本到卡二卡三卡视频| 最新毛片网| 五月激情婷婷丁香| 欧美 日韩 中文字幕| 日韩三级视频在线观看| 欧洲freexxxx性| 国产成人v爽在线免播放观看| 速度与激情在线| 色狠狠狠狠综合影视| 激情五月五月婷婷| 午夜在线观看免费视频| 狠狠干在线观看| 34看网片午夜理| 1024人成软件色www| 114毛片免费观看网站| 主人扒开腿揉捏花蒂调教cfh| 黄视频网站免费看| 四虎影院海外永久| 激情有码| 天天草夜夜爽| h免费在线观看| 羞羞爱爱| 激情玖玖| 色橹橹| 久草在线资源网| 日本一区二区三区视频在线 | 新版天堂中文网| 六月婷婷网视频在线观看|