經濟學人雜志除了色彩鮮明的文章之外,其在數據可視化方面也自成一派。絕妙的顏色搭配,風格鮮明的圖表總能讓讀者過目不忘。
據圖表編輯編輯Sarah Leo在一篇博客中介紹到:雖然對于每一張圖表,他們都盡量準確地以最能支持故事表達的方式來可視化數字,但有時候也會犯錯。
為了能夠做的更好,他們在從錯誤中不斷總結教訓,不斷的自我改進。為此Sarah Leo還把經濟學人的錯誤總結為3點,并寫成一篇博客,供大家參考,大數據文摘對文章編譯如下?
深入了解我們的記錄后,我找到了幾個有用的例子。我將針對數據可視化的問題分為三類:
誤導性圖表
模糊的圖表
未能說明問題的圖表
免責聲明:大多數“原始”圖表是在我們的圖表重新設計之前發布的。改進的圖表是為了符合我們的新規格而繪制的。它們的數據完全一致。
誤導性的圖表
以誤導的方式呈現數據是數據可視化中最嚴重的問題,雖然我們從不故意這樣做,但它確實時不時發生。我們來看看三個例子。
錯誤:截斷標尺
這圖就很左翼分子對不對
此圖表顯示了政治左翼Facebook頁面上帖子的點贊平均數量。這張圖表的重點是顯示Corbyn先生與其他帖子之間的差異。
原始圖表不僅低估了Corbyn先生的數量,還夸大了其他帖子的數量。在重新設計的版本中,我們完整地展示了Corbyn先生的數據并保證所有其他數據長條仍然可見。
另一個奇怪的是顏色的選擇。為了模仿工黨的配色方案,原圖使用了三種橙色/紅色色調來區分Jeremy Corbyn與其他國會議員和政黨。雖然顏色背后的邏輯對許多讀者來說可能是顯而易見的,但對于那些不太熟悉英國政治的人來說,這可能沒什么意義。
錯誤:通過故意操縱坐標軸來假裝存在相關關系
難得的完美關聯?并不是的。
上面的圖表附有一個關于狗重量下降的故事。乍一看,似乎狗的體重和頸部大小完全相關。但這是真的嗎?其實并不是很相關哦。
在原始圖表中,兩個坐標軸的跨度均為三個單位(左邊是21到18;右邊是45到42)。按百分比計算,左邊的比例下降了14%而右邊則下降了7%。在重新設計的圖表中,我保留了雙坐標軸的設計,但調整了它們的范圍以反映可比較的比例變化。
考慮到這個圖表的休閑主題,這個錯誤可能看起來并沒有那么重要。畢竟,圖表的信息在兩個版本中都是相同的。但我們從中學到的事情很重要:如果兩個變量過于緊密相關,那么再仔細觀察一下坐標軸尺度可能是一個好主意。
錯誤:選擇錯誤的可視化方法
對脫歐的看法幾乎和談判結果一樣不穩定
我們在每日新聞應用Espresso中發布了此投票圖表。它顯示了民眾對歐盟公投結果的態度,并以折線圖繪制。從數據來看,似乎受訪者對公投結果的看法相當不穩定——每周都會增加或減少幾個百分點。
我們并未使用平滑曲線繪制單個民意調查來顯示趨勢,而是連接每個民意調查的實際值。這主要是因為我們的內部圖表工具沒有繪制平滑線條的功能。我們直到最近才逐漸開始熟悉更復雜的可視化統計軟件(如R)。今天,我們團隊所有人都能夠繪制一個類似上面重新設計的投票圖表了。
此圖表中需要注意的另一件事是坐標軸如何起點的方式。原始圖表將數據擴展到全部空間。而在重新設計的版本中,我在坐標軸開始的部位和最小數據點之間留下了更多空間。弗朗西斯·加農(Francis Gagnon)為此制定了一個很好的規則:我們應當試著在一個不從零開始的折線圖下留出至少33%的空白區域。
模糊的圖表
這沒有誤導性圖表那么過分,但是一份難以閱讀的圖表還是表明可視化工作做得很糟糕。
錯誤:“發散性思維”過于發散了
…這啥玩意?
在“經濟學人”雜志上,我們被鼓勵創造“發散性思維”的新聞報道。但是有時候,我們會認為這有點太過分了。上圖顯示了美國的商品貿易逆差和制造業就業人數。
該圖表非常難以閱讀。它有兩個主要問題。首先,一個變量(貿易逆差)的值完全是負數,而另一變量(制造業就業)都是正數。將這些差異結合在一個圖表中而不平坦化任一變量非常不合理。有一個顯而易見的解決方案,但這卻會導致第二個問題:兩個變量不共享共同基線。貿易赤字的基線位于圖表的頂部(通過圖表左半邊那截紅線突出顯示),而右半部分的基線則位于底部。
重新設計的圖表顯示其實并沒有必要組合這兩個數據系列。貿易逆差與制造業就業之間的關系仍然很明顯,而這一圖表并沒有額外占據多少空間。
錯誤:莫名其妙的顏色使用
該圖表將政府在養老金福利方面的支出與國家65歲以上人口比例進行了比較,并特別關注了巴西的情況。為了使圖表占據較小版面,可視化工具僅標記了部分國家/地區,并以電藍色突出顯示。經合組織的平均值則以淡藍色突出顯示。
可視化者忽略了這樣一個事實,即不同顏色通常意味著不同分類。乍一看,這個圖表似乎也是如此——所有電藍色似乎屬于與深藍色不同的組合。但其實壓根不是這樣的,區別只是一個有打上國家標簽,一個沒有而已。
在重新設計的版本中,所有國家/地區的圓圈顏色保持不變。我將沒有標簽的數據點的透明度調高了。剩下的就靠排版了:巴西是重點國家所以用字體加粗;而經合組織則用斜體字表示。
未能說明問題的圖表
最后一類的錯誤不太明顯。像這樣的圖表不會誤導讀者,也不會讓人感到困惑。他們只是沒有證明他們存在的合理性 - 通常是因為可視化不合理,或者因為我們非要在小版面內塞進過多信息。
錯誤:包含太多細節
“顏色越多越好!”——好的可視化才不會這樣
這彩虹真好看!我們在德國預算盈余的專欄中公布了這張圖表。它顯示了10個歐元區國家的預算余額和活期賬戶余額。
有這么多顏色,而且其中一些很難被區分。另外,因為對應的值太小了,壓根沒有辦法得到任何圖表信息。它只會讓你眼前一愣然后趕緊轉移視線。而且更重要的是,由于我們沒有繪制所有歐元區國家,因此堆疊數據沒有任何意義。
我回過頭看看有沒有辦法簡化這個圖表。該專欄提到德國、希臘、荷蘭、西班牙以及歐元區總數。在重新設計的圖表版本中,我決定只強調這些。為了解決僅堆疊部分國家的問題,我添加了另一個類別(“其他”),其中包括所有其他歐元區國家。(由于歐盟統計局進行了數據修訂,重新設計的圖表中的流動賬戶余額總額低于原始圖表。)
錯誤:大量數據,空間不足
我放棄。
受到有限版面空間的限制,我們經常試圖將所有數據一股腦兒塞進圖表中。雖然這可以節省頁面上的寶貴空間,但它還是會有負面影響。比如這張2017年三月的圖表,它是關于科學界的論文發表是如何由男性主導的。所有數據點都同樣有趣且與主旨緊密相關。但是,一下子提供如此多的數據(四個研究領域類別以及發表人的比例)這些信息很難一起被接受。
經過深思熟慮之后,我決定不重新設計這個圖表。如果我要保留所有數據,那么圖表就會變得過于復雜而不簡潔。在這種情況下,削減一些內容會更好。或者,我們可以展示某種平均化的衡量標準,例如所有領域的女性發表作品的平均比例。
-
數據
+關注
關注
8文章
7030瀏覽量
89038 -
可視化
+關注
關注
1文章
1194瀏覽量
20942 -
圖表
+關注
關注
0文章
25瀏覽量
8857
原文標題:《經濟學人》數據可視化編輯:錯誤的圖表,我們也畫了很多
文章出處:【微信號:BigDataDigest,微信公眾號:大數據文摘】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論