在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

圖神經(jīng)網(wǎng)絡GNN的卷積操作流程

電子工程師 ? 來源:工程師曾玲 ? 2019-06-08 17:13 ? 次閱讀

2019年的時針開始轉動,在CNN、RNN、LSTM、GAN、GNN、CAP的潮起潮落中,帶來了這篇博客。放上一篇 參考引用 。 其實個人認為理解GNN的核心問題就是理解圖怎么做傅里葉變換。CNN的核心操作時卷積,GNN也是。CNN計算二維矩陣的卷積,GNN計算圖的卷積。那么我們定義好圖的傅里葉變換和圖的卷積就可以了,其媒介就是圖的拉普拉斯矩陣。

好了,這篇博客將簡要介紹圖神經(jīng)網(wǎng)絡的原理,但是不會設計太多數(shù)學細節(jié)(因為博主數(shù)學很爛啦)。通過理解圖神經(jīng)網(wǎng)絡的卷積操作,來理解其流程,再會配合代碼來做簡單解釋。

拉普拉斯矩陣

對于一個圖來說,其度為其與頂點鏈接的數(shù)量,Degree Matrix的對角線元素就是其每個頂點度的數(shù)量。鄰接矩陣表示了圖中各個頂點的鄰接關系。如下圖,一個圖的Laplace矩陣就是 L = D – A。

圖神經(jīng)網(wǎng)絡GNN的卷積操作流程

Laplace矩陣的計算

事實上,常用的Laplace矩陣有三種,上面介紹的只是其中一種。

Laplace矩陣有許多良好的性質:

1. Laplace矩陣是對稱矩陣,可以進行特征分解

2. Laplace矩陣只在中心頂點和一階相連頂點上有非0元素,其余處均為0

3. Laplace算子與Laplace矩陣進行類比

圖的傅里葉變換

推廣傅里葉變換

傳統(tǒng)的傅里葉變換針對連續(xù)的函數(shù),然后對數(shù)列有了離散傅里葉變換,那么矩陣能否做傅里葉變換呢?這篇Paper告訴我們,可以,沒問題:https://arxiv.org/abs/1211.0053

L時拉普拉斯矩陣,V是其特征向量,滿足 LV=\lambda V

L的拉普拉斯譜分解為 L = U \sigma U^T

那么定義Graph上的傅里葉變換為Fourier(f) = U^T f

推廣卷積(f*h)_G = U((U^Th)\odot(U^Tf))

那么時域上的卷積就是頻域點乘的傅里葉逆變換,這樣我們就可以實現(xiàn)卷積操作了。

理解拉普拉斯矩陣譜分解

傅里葉變換的本質,就是把任意一個函數(shù)表示成若干正交函數(shù)(由sin,cos構成)的線性組合。

圖神經(jīng)網(wǎng)絡GNN的卷積操作流程

傅里葉變換

拉普拉斯矩陣的特征值表示頻率。再graph空間上無法可視化頻率的概念,信息論告訴我們,特征值越大,對應的信息越多,小的特征值就是低頻分量,信息較少,是可以忽略的。

在壓縮圖像的過程中,也是把低頻成分變?yōu)?,高頻(邊緣)會被保留,它帶給我們更多的信息。

Deep Learning 中的 Graph Convolution

在卷積和中,需要手工設置K個參數(shù),K具有很好的spatial localization,對應的有權重系數(shù)(這些具體的參數(shù)根據(jù)模型會有不同,這里大致介紹,重在理解)。更直觀的看,K=1就是對每個頂點上一階neighbor的feature進行加權求和,如下圖

圖神經(jīng)網(wǎng)絡GNN的卷積操作流程

K=1的情況

圖神經(jīng)網(wǎng)絡GNN的卷積操作流程

K=2的情況

GCN每次卷積對所有頂點都完成了圖示操作。

進一步在數(shù)學層面上理解Spectral Graph在GCN中的作用,這個就參考開頭給出鏈接中的paper吧。

OK,See You Next Time!

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關推薦

    全連接神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡有什么區(qū)別

    全連接神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡的區(qū)別
    發(fā)表于 06-06 14:21

    卷積神經(jīng)網(wǎng)絡如何使用

    卷積神經(jīng)網(wǎng)絡(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
    發(fā)表于 07-17 07:21

    什么是圖卷積神經(jīng)網(wǎng)絡

    卷積神經(jīng)網(wǎng)絡
    發(fā)表于 08-20 12:05

    卷積神經(jīng)網(wǎng)絡的優(yōu)點是什么

    卷積神經(jīng)網(wǎng)絡的優(yōu)點
    發(fā)表于 05-05 18:12

    GNN神經(jīng)網(wǎng)絡)硬件加速的FPGA實戰(zhàn)解決方案

    ,對傳統(tǒng)的機器學習算法設計以及其實現(xiàn)技術帶來了嚴峻的挑戰(zhàn)。在此背景之下,諸多基于Graph的新型機器學習算法—GNN神經(jīng)網(wǎng)絡),在學術界和產(chǎn)業(yè)界不斷的涌現(xiàn)出來。GNN對算力和存儲器
    發(fā)表于 07-07 08:00

    卷積神經(jīng)網(wǎng)絡一維卷積的處理過程

    。本文就以一維卷積神經(jīng)網(wǎng)絡為例談談怎么來進一步優(yōu)化卷積神經(jīng)網(wǎng)絡使用的memory。文章(卷積神經(jīng)網(wǎng)絡
    發(fā)表于 12-23 06:16

    卷積神經(jīng)網(wǎng)絡模型發(fā)展及應用

    卷積神經(jīng)網(wǎng)絡模型發(fā)展及應用轉載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學習是機器學習和人工智能研究的最新趨勢,作為一個
    發(fā)表于 08-02 10:39

    卷積神經(jīng)網(wǎng)絡簡介:什么是機器學習?

    抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來越多地支持以前無法實現(xiàn)或非常難以實現(xiàn)的應用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡 (CNN) 及其在 AI 系統(tǒng)中機器學習中的重要性。CNN 是從
    發(fā)表于 02-23 20:11

    卷積神經(jīng)網(wǎng)絡概述 卷積神經(jīng)網(wǎng)絡的特點 cnn卷積神經(jīng)網(wǎng)絡的優(yōu)點

    卷積神經(jīng)網(wǎng)絡概述 卷積神經(jīng)網(wǎng)絡的特點 cnn卷積神經(jīng)網(wǎng)絡的優(yōu)點?
    的頭像 發(fā)表于 08-21 16:41 ?3000次閱讀

    卷積神經(jīng)網(wǎng)絡的介紹 什么是卷積神經(jīng)網(wǎng)絡算法

    卷積神經(jīng)網(wǎng)絡的介紹 什么是卷積神經(jīng)網(wǎng)絡算法 卷積神經(jīng)網(wǎng)絡涉及的關鍵技術
    的頭像 發(fā)表于 08-21 16:49 ?1891次閱讀

    卷積神經(jīng)網(wǎng)絡算法是機器算法嗎

    神經(jīng)網(wǎng)絡的原理 先介紹一下卷積神經(jīng)網(wǎng)絡的原理。卷積神經(jīng)網(wǎng)絡中的核心結構是卷積層。
    的頭像 發(fā)表于 08-21 16:49 ?853次閱讀

    卷積神經(jīng)網(wǎng)絡算法流程 卷積神經(jīng)網(wǎng)絡模型工作流程

    卷積神經(jīng)網(wǎng)絡算法流程 卷積神經(jīng)網(wǎng)絡模型工作流程? 卷積
    的頭像 發(fā)表于 08-21 16:50 ?2872次閱讀

    卷積神經(jīng)網(wǎng)絡主要包括哪些 卷積神經(jīng)網(wǎng)絡組成部分

    ,并且在處理圖像、音頻、文本等方面具有非常出色的表現(xiàn)。本文將從卷積神經(jīng)網(wǎng)絡的原理、架構、訓練、應用等方面進行詳細介紹。 一、卷積神經(jīng)網(wǎng)絡原理 1.1
    的頭像 發(fā)表于 08-21 17:15 ?1696次閱讀

    卷積神經(jīng)網(wǎng)絡的原理與實現(xiàn)

    核心思想是通過卷積操作提取輸入數(shù)據(jù)的特征。與傳統(tǒng)的神經(jīng)網(wǎng)絡不同,卷積神經(jīng)網(wǎng)絡具有參數(shù)共享和局部連接的特點,這使得其在處理圖像等高維數(shù)據(jù)時具有
    的頭像 發(fā)表于 07-02 16:47 ?607次閱讀

    卷積神經(jīng)網(wǎng)絡的實現(xiàn)原理

    、訓練過程以及應用場景。 卷積神經(jīng)網(wǎng)絡的基本原理 1.1 卷積操作 卷積神經(jīng)網(wǎng)絡的核心是
    的頭像 發(fā)表于 07-03 10:49 ?562次閱讀
    主站蜘蛛池模板: 在线免费观看h| 久久狠狠干| 国产骚b| 国内精品久久影视| 99精品在免费线视频| 特黄毛片| 四虎电影院| 日本大黄在线观看| 黄色网一级片| 一级一片一a一片| 奇米影视狠狠| 亚洲精品日韩专区silk| 天天操人人爱| 可以看黄色的网站| 色涩在线| 免费性网站| 无遮挡很爽很污很黄在线网站| 四虎影视院| 久久亚洲精品成人综合| 9久久精品| 久久福利免费视频| 中文字幕精品一区影音先锋| 久久99久久99精品免观看| 香蕉久久夜色精品国产小说| 欧美一级视频精品观看| 国产成人精品日本亚洲语言| 手机看片日韩在线| 天天看天天摸色天天综合网| 久久精品午夜| 色香欲亚洲天天综合网| 婷婷射| 久久久噜久噜久久gif动图| 亚洲欧美性另类春色| 国产精品久久久久久久久久影院| 色偷偷亚洲天堂| 色综合久久丁香婷婷| 国产图片区| 欧美精品xxxxbbbb| 男人j进女人j的一进一出视频| 色香视频在线| 大色视频|