卷積神經網絡仿造生物的視知覺(visual perception)機制構建,可以進行監督學習和非監督學習,其隱含層內的卷積核參數共享和層間連接的稀疏性使得卷積神經網絡能夠以較小的計算量對格點化(grid-like topology)特征,例如像素和音頻進行學習、有穩定的效果且對數據沒有額外的特征工程(feature engineering)要求。
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。
舉報投訴
-
FPGA
+關注
關注
1629文章
21750瀏覽量
604108 -
音頻
+關注
關注
29文章
2883瀏覽量
81644 -
神經網絡
+關注
關注
42文章
4773瀏覽量
100874
發布評論請先 登錄
相關推薦
【PYNQ-Z2申請】基于PYNQ的卷積神經網絡加速
,得到訓練參數2、利用開發板arm與FPGA聯合的特性,在arm端實現圖像預處理已經卷積核神經網絡的池化、激活函數和全連接,在FPGA端
發表于 12-19 11:37
什么是深度學習?使用FPGA進行深度學習的好處?
FPGA實現。易于適應新的神經網絡結構深度學習是一個非常活躍的研究領域,每天都在設計新的 DNN。其中許多結合了現有的標準計算,但有些需要全新的計算方法。特別是在具有特殊結構的
發表于 02-17 16:56
基于FPGA的深度卷積神經網絡服務優化和編譯測試
,自然語言處理,推薦算法,圖像識別等廣泛的應用領域。 FPGA云服務器提供了基于FPGA的深度卷積神經網絡加速服務,單卡提供約3TOPs的定
發表于 11-15 16:56
?857次閱讀
如何通過FPGA實現深度卷積網絡(3)
卷積神經網絡具有表征學習(representation learning)能力,能夠按其階層結構對輸入信息進行平移不變分類(shift-invariant classification),因此也
卷積神經網絡和深度神經網絡的優缺點 卷積神經網絡和深度神經網絡的區別
深度神經網絡是一種基于神經網絡的機器學習算法,其主要特點是由多層神經元構成,可以根據數據自動調整神經元之間的權重,從而實現對大規模數據進行預測和分類。
發表于 08-21 17:07
?4168次閱讀
卷積神經網絡的原理與實現
1.卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。 卷積神經
深度學習與卷積神經網絡的應用
隨著人工智能技術的飛速發展,深度學習和卷積神經網絡(Convolutional Neural Network, CNN)作為其中的重要分支,已經在多個領域取得了顯著的應用成果。從圖像識
卷積神經網絡的實現原理
卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經
評論