在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習以及關于TensorFlow的簡介

C語言專家集中營 ? 來源:fqj ? 2019-06-05 11:37 ? 次閱讀

2017年2月16日,Google正式對外發(fā)布Google TensorFlow 1.0版本,并保證本次的發(fā)布版本API接口完全滿足生產環(huán)境穩(wěn)定性要求。這是TensorFlow的一個重要里程碑,標志著它可以正式在生產環(huán)境放心使用。在國內,從InfoQ的判斷來看,TensorFlow仍處于創(chuàng)新傳播曲線的創(chuàng)新者使用階段,大部分人對于TensorFlow還缺乏了解,社區(qū)也缺少幫助落地和使用的中文資料。InfoQ期望通過深入淺出TensorFlow系列文章能夠推動Tensorflow在國內的發(fā)展。歡迎加入QQ群(群號:183248479)深入討論和交流。

本文是整個系列的第一篇文章,將會介紹深度學習的發(fā)展歷史以及深度學習目前成熟的應用,同時也會介紹目前主流的深度學習工具,以及TensorFlow相比于其他工具的優(yōu)勢。

從計算機發(fā)明之初,人們就希望它能夠幫助甚至代替人類完成重復性勞作。利用巨大的存儲空間和超高的運算速度,計算機已經(jīng)可以非常輕易地完成一些對于人類非常困難,但對計算機相對簡單的問題。比如統(tǒng)計一本書中不同單詞出現(xiàn)的次數(shù),存儲一個圖書館中所有的藏書或是計算非常復雜的數(shù)學公式都可以輕松通過計算機解決。然而,一些人類通過直覺可以很快解決的問題,目前卻很難通過計算機解決。人工智能領域需要解決的問題就是讓計算機能像人類一樣,甚至超越人類完成類似圖像識別、語音識別等問題。

計算機要像人類一樣完成更多智能的工作需要夠掌握人類的經(jīng)驗。比如我們需要判斷一封郵件是否為垃圾郵件,會綜合考慮郵件發(fā)出的地址、郵件的標題、郵件的內容以及郵件收件人的長度,等等。這是我們受到無數(shù)垃圾郵件騷擾之后總結出來的經(jīng)驗。這個經(jīng)驗很難以固定的方式表達出來,而且不同人對垃圾郵件的判斷也會不一樣。如何讓計算機可以跟人類一樣從歷史的經(jīng)驗中獲取新的知識呢?這就是機器學習需要解決的問題。

什么是深度學習?

對許多機器學習問題來說,特征提取不是一件簡單的事情。在一些復雜問題上,要通過人工的方式設計有效的特征集合需要很多的時間和精力,有時甚至需要整個領域數(shù)十年的研究投入。例如,假設想從很多照片中識別汽車。現(xiàn)在已知的是汽車有輪子,所以希望在圖片中抽取“圖片中是否出現(xiàn)了輪子”這個特征。但實際上,要從圖片的像素中描述一個輪子的模式是非常難的。雖然車輪的形狀很簡單,但在實際圖片中,車輪上可能會有來自車身的陰影、金屬車軸的反光,周圍物品也可能會部分遮擋車輪。實際圖片中各種不確定的因素讓我們很難直接抽取這樣的特征。

圖1 傳統(tǒng)機器學習和深度學習流程對比

圖2 深度學習在圖像分類問題上的算法流程樣例

人工智能、機器學習和深度學習的關系

總的來說,人工智能、機器學習和深度學習是非常相關的幾個領域。圖3總結了它們之間的關系。人工智能是一類非常廣泛的問題,機器學習是解決這類問題的一個重要手段,深度學習則是機器學習的一個分支。在很多人工智能問題上,深度學習的方法突破了傳統(tǒng)機器學習方法的瓶頸,推動了人工智能領域的發(fā)展。

圖3 人工智能、機器學習以及深度學習之間的關系圖

圖4展示了“deep learning”(深度學習)這個詞在最近十年谷歌搜索的熱度趨勢。從圖中可以看出,從2012年之后,深度學習的熱度呈指數(shù)上升,到2016年時,深度學習已經(jīng)成為了谷歌上最熱門的搜索詞。深度學習這個詞并不是最近才創(chuàng)造出來的,它基本就是深層神經(jīng)網(wǎng)絡的代名詞。受到人類大腦結構的啟發(fā),神經(jīng)網(wǎng)絡的計算模型于1943年首次提出。之后感知機的發(fā)明使得神經(jīng)網(wǎng)絡成為真正可以從數(shù)據(jù)中“學習”的模型。但由于感知機的網(wǎng)絡結構過于簡單,導致無法解決線性不可分問題。再加上神經(jīng)網(wǎng)絡所需要的計算量太大,當時的計算機無法滿足計算需求,使得神經(jīng)網(wǎng)絡的研究進入了第一個寒冬。

圖4 “deep learning”最近十年在谷歌搜索的熱度趨勢。

到20世紀80年代,深層神經(jīng)網(wǎng)絡和反向傳播算法的提出很好地解決了這些問題,讓神經(jīng)網(wǎng)絡進入第二個快速發(fā)展期。不過,在這一時期中,以支持向量機為主的傳統(tǒng)機器學習算法也在飛速發(fā)展。在90年代中期,在很多機器學習任務上,傳統(tǒng)機器學習算法超越了神經(jīng)網(wǎng)絡的精確度,使得神經(jīng)網(wǎng)絡領域再次進入寒冬。直到2012年前后,隨著云計算和海量數(shù)據(jù)的普及,神經(jīng)網(wǎng)絡以“深度學習”的名字再次進入大家的視野。2012年,深度學習算法AlexNet贏得圖像分類比賽ILSVRC(ImageNet Large Scale Visual Recognition Challenge)冠軍,深度學習從此開始受到學術界廣泛的關注。

深度學習的應用

圖5展示了歷年ILSVRC比賽的情況,從圖中可以看到,在深度學習被使用之前,傳統(tǒng)計算機視覺的方法在ImageNet數(shù)據(jù)集上最低的Top5錯誤率為26%。從2010年到2011年,基于傳統(tǒng)機器學習的算法并沒有帶來正確率的大幅提升。在2012年時,Geoffrey Everest Hinton教授的研究小組利用深度學習技術將ImageNet圖像分類的錯誤率大幅下降到了16%。而且,從2012年到2015年間,通過對深度學習算法的不斷研究,ImageNet圖像分類的錯誤率以每年4%的速度遞減。這說明深度學習完全打破了傳統(tǒng)機器學習算法在圖像分類上的瓶頸,讓圖像分類問題得到了更好的解決。如圖5所示,到2015年時,深度學習算法的錯誤率為4%,已經(jīng)成功超越了人工標注的錯誤率(5%),實現(xiàn)了計算機視覺研究領域的一個突破。

圖5 歷年ILSVRC圖像分類比賽最佳算法的錯誤率

在技術革新的同時,工業(yè)界也將圖像分類、物體識別應用于各種產品中了。在谷歌,圖像分類、物體識別技術已經(jīng)被廣泛應用于谷歌無人駕駛車、YouTube、谷歌地圖、谷歌圖像搜索等產品中。谷歌通過圖像處理技術可以歸納出圖片中的主要內容并實現(xiàn)以圖搜圖的功能。這些技術在國內的百度、阿里、騰訊等科技公司也已經(jīng)得到了廣泛的應用。

在物體識別問題中,人臉識別是一類應用非常廣泛的技術。它既可以應用于娛樂行業(yè),也可以應用于安防、風控行業(yè)。在娛樂行業(yè)中,基于人臉識別的相機自動對焦、自動美顏基本已經(jīng)成為每一款自拍軟件的必備功能。在安防、風控領域,人臉識別應用更是大大提高了工作效率并節(jié)省了人力成本。
比如在互聯(lián)網(wǎng)金融行業(yè),為了控制貸款風險,在用戶注冊或者貸款發(fā)放時需要驗證本人信息。個人信息驗證中一個很重要的步驟是驗證用戶提供的證件和用戶是同一個人。通過人臉識別技術,這個過程可以被更加高效地實現(xiàn)。

深度學習在語音識別領域取得的成績也是突破性的。2009年深度學習的概念被引入語音識別領域,并對該領域產生了巨大的影響。在短短幾年時間內,深度學習的方法在TIMIT數(shù)據(jù)集上將基于傳統(tǒng)的混合高斯模型(gaussian mixture model,GMM)的錯誤率從21.7%降低到了使用深度學習模型的17.9%。
如此大的提高幅度很快引起了學術界和工業(yè)界的廣泛關注。從2010年到2014年間,在語音識別領域的兩大學術會議IEEE-ICASSP和Interspeech上,深度學習的文章呈現(xiàn)出逐年遞增的趨勢。在工業(yè)界,包括谷歌、蘋果、微軟、IBM、百度等在內的國內外大型IT公司提供的語音相關產品,比如谷歌的Google Now,蘋果的Siri、微軟的Xbox和Skype等,都是基于深度學習算法。

深度學習在自然語言處理領域的應用也同樣廣泛。在過去的幾年中,深度學習已經(jīng)在語言模型(language modeling)、機器翻譯、詞性標注(part-of-speech tagging)、實體識別(named entity recognition,NER)、情感分析(sentiment analysis)、廣告推薦以及搜索排序等問題上取得了突出成就。
在機器翻譯問題上,根據(jù)谷歌的實驗結果,在主要的語言對上,使用深度學習可以將機器翻譯算法的質量提高55%到85%。表1對比了不同算法翻譯同一句話的結果。從表中可以直觀地看到深度學習算法帶來翻譯質量的提高。在2016年9月,谷歌正式上線了基于深度學習的中譯英軟件。現(xiàn)在在谷歌翻譯產品中,所有從中文到英文的翻譯請求都是由基于深度學習的翻譯算法完成的。

表1 不同翻譯算法的翻譯效果對比表

TensorFlow:來自Google的深度學習框架

要將深度學習更快且更便捷地應用于新的問題中,選擇一款深度學習工具是必不可少的步驟。

TensorFlow是谷歌于2015年11月9日正式開源的計算框架。TensorFlow計算框架可以很好地支持深度學習的各種算法,但它的應用也不限于深度學習。

TensorFlow是由Jeff Dean領頭的谷歌大腦團隊基于谷歌內部第一代深度學習系統(tǒng)DistBelief改進而來的通用計算框架。DistBelief是谷歌2011年開發(fā)的內部深度學習工具,這個工具在谷歌內部已經(jīng)獲得了巨大的成功。

基于DistBelief的ImageNet圖像分類系統(tǒng)Inception模型贏得了ImageNet2014年的比賽(ILSVRC)。通過DistBelief,谷歌在海量的非標注YouTube視屏中習得了“貓”的概念,并在谷歌圖片中開創(chuàng)了圖片搜索的功能。使用DistBelief訓練的語音識別模型成功將語音識別的錯誤率降低了25%。在一次BBC采訪中,當時的谷歌首席執(zhí)行官Eric Schmidt表示這個提高比率相當于之前十年的總和。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1791

    文章

    47279

    瀏覽量

    238511
  • 機器學習
    +關注

    關注

    66

    文章

    8418

    瀏覽量

    132646

原文標題:深度學習及TensorFlow簡介

文章出處:【微信號:C_Expert,微信公眾號:C語言專家集中營】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    Nanopi深度學習之路(1)深度學習框架分析

    ://www.sohu.com/a/204207587_99960938而我現(xiàn)在要考慮的是跨平臺、跨系統(tǒng)性能強,并支持Nanopi2的深度學習算法庫。近兩年TensorFlow開源后,對于初學
    發(fā)表于 06-04 22:32

    谷歌深度學習插件tensorflow

    前段時間忙著研究Zedboard,這幾天穿插著加入Python的深度學習的研究,最近使用谷歌的tensorflow比較多,而且官方出了中文教程,比較給力,下面在Windows10下安裝一下
    發(fā)表于 07-04 13:46

    干貨!教你怎么搭建TensorFlow深度學習開發(fā)環(huán)境!

    操作系統(tǒng)。2017年,TensorFlow終于推出了1.0版本,這標志著應用最廣泛、使用人數(shù)最多的深度學習算法TensorFlow推出了正式版。目前
    發(fā)表于 09-27 13:56

    Anaconda之tensorflow深度學習之Anaconda下安裝tensorflow正確運行之史上最強攻略

    Anaconda之tensorflow深度學習之Anaconda下安裝tensorflow正確運行之史上最強攻略
    發(fā)表于 12-21 10:40

    深度學習框架TensorFlow&TensorFlow-GPU詳解

    TensorFlow&TensorFlow-GPU:深度學習框架TensorFlow&TensorFlo
    發(fā)表于 12-25 17:21

    淺談深度學習TensorFlow

    神經(jīng)網(wǎng)絡和深度學習的概念,但為了完整起見,我們將在這里介紹基礎知識,并探討 TensorFlow 的哪些特性使其成為深度學習的熱門選擇。神經(jīng)
    發(fā)表于 07-28 14:34

    全網(wǎng)唯一一套labview深度學習教程:tensorflow+目標檢測:龍哥教你學視覺—LabVIEW深度學習教程

    `【新課上線】tensorflow+目標檢測:龍哥教你學視覺—LabVIEW深度學習教程(強推)課程目標:1、讓沒有任何python,tensorflow基礎的學員
    發(fā)表于 08-10 10:38

    labview測試tensorflow深度學習SSD模型識別物體

    安裝labview2019 vision,自帶深度學習推理工具,支持tensorflow模型。配置好python下tensorflow環(huán)境配置好object_detection API
    發(fā)表于 08-16 17:21

    labview+yolov4+tensorflow+openvion深度學習

    。1、讓沒有任何python,tensorflow基礎的學員學習到如何搭建深度學習訓練平臺。2、學會使用imglabel軟件標注圖片,弄清楚怎么樣標注目標3、學會利用labview調用
    發(fā)表于 05-10 22:33

    Mali GPU支持tensorflow或者caffe等深度學習模型嗎

    Mali GPU 支持tensorflow或者caffe等深度學習模型嗎? 好像caffe2go和tensorflow lit可以部署到ARM,但不知道是否支持在GPU運行?我希望把訓
    發(fā)表于 09-16 14:13

    TensorFlow實戰(zhàn)之深度學習框架的對比

    Google近日發(fā)布了TensorFlow 1.0候選版,這第一個穩(wěn)定版將是深度學習框架發(fā)展中的里程碑的一步。自TensorFlow于2015年底正式開源,距今已有一年多,這期間
    發(fā)表于 11-16 11:52 ?4572次閱讀
    <b class='flag-5'>TensorFlow</b>實戰(zhàn)之<b class='flag-5'>深度</b><b class='flag-5'>學習</b>框架的對比

    為什么學習深度學習需要使用PyTorch和TensorFlow框架

    如果你需要深度學習模型,那么 PyTorch 和 TensorFlow 都是不錯的選擇。 并非每個回歸或分類問題都需要通過深度學習來解決。
    的頭像 發(fā)表于 09-14 10:57 ?3454次閱讀

    使用TensorFlow建立深度學習和機器學習網(wǎng)絡

    教你使用TensorFlow建立深度學習和機器學習網(wǎng)絡。
    發(fā)表于 03-26 09:44 ?18次下載

    深度學習框架tensorflow介紹

    深度學習框架tensorflow介紹 深度學習框架TensorFlow
    的頭像 發(fā)表于 08-17 16:11 ?2522次閱讀

    TensorFlow與PyTorch深度學習框架的比較與選擇

    深度學習作為人工智能領域的一個重要分支,在過去十年中取得了顯著的進展。在構建和訓練深度學習模型的過程中,深度
    的頭像 發(fā)表于 07-02 14:04 ?973次閱讀
    主站蜘蛛池模板: 1024手机在线看| 日本中文字幕在线播放| 日本怡红| 91寡妇天天综合久久影院| 国产成+人+综合+亚洲欧美丁香花| 日本免费不卡视频| 人成电影免费观看在线| 亚洲精品久久久久午夜三| 欧美最猛黑人xxxx黑人猛交69| 亚洲a影院| 国产精品电影一区| 国产精品秒播无毒不卡| 亚洲一级毛片在线观播放| 国产精品乳摇在线播放| 222在线视频免费观看| 午夜黄色福利| 6969精品视频在线观看| 69xxx网站| 男人的天堂色偷偷之色偷偷| 天堂网在线.www天堂在线 | 99精品热视频| 户外露出精品视频国产| 高清一级片| 色偷偷91综合久久噜噜| 偷偷操不一样的久久| 久久久久国产一级毛片高清片| 99精品在免费线视频| 婷婷六| 闲人综合| 综合色亚洲| 9999毛片免费看| 男女一区二区三区免费| 国产免费播放| 一级毛片美国一级j毛片不卡| 美女天天色| 777奇米四色米奇影院在线播放| 色多多视频官网| 免费视频精品| 四虎影院国产精品| 欧美成人午夜片一一在线观看| 婷婷中文网|