在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

盤點一下mAP最高的目標檢測算法

DPVg_AI_era ? 來源:lq ? 2019-07-13 08:10 ? 次閱讀

目標檢測中存在兩個非常重要的性能:精度和速度,特指mAP和FPS。本文便對mAP最高的目標檢測算法進行了盤點。

趁最近目標檢測(Object Detection)方向的論文更新較少,趕緊做個"最強目標檢測算法"大盤點。

要知道衡量目標檢測最重要的兩個性能就是精度和速度,特指mAP 和 FPS。其實現在大多數論文要么強調 mAP 很高,要么就是強調 mAP 和 FPS 之間 Trade-off 有多好。

本文就來盤點一下mAP 最高的目標檢測算法,小編將在COCO數據集上 mAP 最高的算法認為是"性能最強"目標檢測算法。(COCO數據集是現在最主流的目標檢測數據集,這一點看最新的頂會論文就知道了)

時間:2019.07.07

盤點內容:目標檢測 mAP 最高的算法

說到目標檢測算法,大家腦子里最先蹦出來的算法應該是 Faster R-CNN 和 YOLOv3。這一點在我調研的時候,從大家的反饋明顯看得出來。

要知道 Faster R-CNN已經是2015年提出的論文了,而YOLOv3發表出來也已經一年多了。最近目標檢測相關的論文,比較典型的有:SNIPER、CornerNet、ExtremeNet、TridentNet、FSAF、FCOS、FoveaBox、兩個CenterNet 和 CornerNet-Lite等。

這么多目標檢測算法,究竟哪家最強呢?!

性能最強的目標檢測算法

這里羅列了幾個mAP很強很強的算法,并以時間線的角度來展示。

注意:各個網絡使用不同backbone,或加不同的tricks,都會有不同的 mAP。所以小編只介紹所能查到最強的算法或者最強組合算法。

SNIPER: Efficient Multi-Scale Training

mAP:47.6

Date:2018.05.23

arXiv:https://arxiv.org/abs/1805.09300

https://github.com/MahyarNajibi/SNIPER/

TridentNet:Scale-Aware Trident Networks for Object Detection

mAP:48.4

Date:2019.01.07 (已開源)

arXiv:https://arxiv.org/abs/1901.01892

https://github.com/TuSimple/simpledet

HTC + DCN + ResNeXt-101-FPN

mAP:50.7

Date:2019.01.22 (已開源)

arXiv:https://arxiv.org/abs/1901.07518

https://github.com/open-mmlab/mmdetection

NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection

mAP:48.3

Date:2019.04.16 (未開源)

arXiv:https://arxiv.org/abs/1904.07392

CornerNet-Saccade+gt attention

mAP:50.3

Date:2019.04.18 (已開源)

arXiv:https://arxiv.org/abs/1904.08900

https://github.com/princeton-vl/CornerNet-Lite

Cascade R-CNN:High Quality Object Detection and Instance Segmentation

mAP:50.9

Date:2019.06.24 (已開源)

arXiv:https://arxiv.org/abs/1906.09756

Caffe:https://github.com/zhaoweicai/cascade-rcnn

PyTorch:https://github.com/zhaoweicai/Detectron-Cascade-RCNN

Learning Data Augmentation Strategies for Object Detection

mAP:50.7

Date:2019.06.26 (已開源)

arXiv:https://arxiv.org/abs/1906.11172

https://github.com/tensorflow/tpu/tree/master/models/official/detection

綜上所述,可知改進后的 Cascade R-CNN 算法是目前(2019.07.07)目標檢測方向性能最強的算法,其 mAP 為 50.9。

侃侃

這里將 mAP 作為目標檢測最強的指標,確實有失偏頗,不夠嚴謹,因為很多人將目標檢測應用在不同的任務上,其實要求的性能也有所不同。但請放心,小編后續會統計一波 FPS最快的目標檢測算法 和 mAP-FPS Trade-off 最佳的算法。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MAP
    MAP
    +關注

    關注

    0

    文章

    49

    瀏覽量

    15144
  • 檢測算法
    +關注

    關注

    0

    文章

    119

    瀏覽量

    25220
  • 數據集
    +關注

    關注

    4

    文章

    1208

    瀏覽量

    24701

原文標題:大盤點 | 性能最強的目標檢測算法

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    AI模型部署邊緣設備的奇妙之旅:目標檢測模型

    廣泛的應用,然而,在移動端工業領域的實際應用中,對目標檢測算法提出了更為苛刻的要求:需要實現高速度、高精度、小體積、易部署等特性。為應對這挑戰,百度于2021年末發布了篇關于移動端
    發表于 12-19 14:33

    如何制定套優質的工業視覺檢測算法方案?

    很難與當下主流的AI平臺工具配型,或者是通過單一算法模型進行訓練,通常情況,工業視覺檢測項目面臨著系列獨特的難點與挑戰。比如:算法實現難
    的頭像 發表于 11-14 01:05 ?489次閱讀
    如何制定<b class='flag-5'>一</b>套優質的工業視覺<b class='flag-5'>檢測算法</b>方案?

    在樹莓派上部署YOLOv5進行動物目標檢測的完整流程

    目標檢測在計算機視覺領域中具有重要意義。YOLOv5(You Only Look One-level)是目標檢測算法中的種代表性方法,以其
    的頭像 發表于 11-11 10:38 ?997次閱讀
    在樹莓派上部署YOLOv5進行動物<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>的完整流程

    旗晟機器人環境檢測算法有哪些?

    硬件支撐,更離不開強大的算法庫作為軟件核心,二者相輔相成,缺不可。今天就來了解旗晟機器人環境檢測算法。 1、設施異常監測 通過集成高精度傳感器與智能圖像識別技術。它不僅能檢測A字梯是
    的頭像 發表于 07-19 17:54 ?534次閱讀
    旗晟機器人環境<b class='flag-5'>檢測算法</b>有哪些?

    目標檢測與識別技術有哪些

    目標檢測與識別技術是計算機視覺領域的重要研究方向,廣泛應用于安全監控、自動駕駛、醫療診斷、工業自動化等領域。 目標檢測與識別技術的基本概念 目標
    的頭像 發表于 07-17 09:40 ?609次閱讀

    目標檢測與識別技術的關系是什么

    目標檢測與識別技術是計算機視覺領域的兩個重要研究方向,它們之間存在著密切的聯系和相互依賴的關系。 目標檢測與識別技術的概念
    的頭像 發表于 07-17 09:38 ?608次閱讀

    慧視小目標識別算法 解決目標檢測中的老大難問題

    隨著深度學習和人工智能技術的興起與技術成熟,大批如FasterR-CNN、RetinaNet、YOLO等可以在工業界使用的目標檢測算法已逐步成熟并進入實際應用,大多數場景
    的頭像 發表于 07-17 08:29 ?495次閱讀
    慧視小<b class='flag-5'>目標</b>識別<b class='flag-5'>算法</b>   解決<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>中的老大難問題

    opencv圖像識別有什么算法

    圖像識別算法: 邊緣檢測 :邊緣檢測是圖像識別中的基本步驟之,用于識別圖像中的邊緣。常見的邊緣檢測算法有Canny邊緣
    的頭像 發表于 07-16 10:40 ?1046次閱讀

    基于深度學習的小目標檢測

    在計算機視覺領域,目標檢測直是研究的熱點和難點之。特別是在小目標檢測方面,由于小
    的頭像 發表于 07-04 17:25 ?886次閱讀

    口罩佩戴檢測算法

    口罩佩戴檢測算法基于YOLOv5在圖像識別檢測領域的優異性能,本文研究基于基于YOLOv5的口罩佩自動戴檢測方法。首先從網絡和真實生活中中尋找并采集不同場景人群口罩佩戴的圖片約500張并自建數據集
    的頭像 發表于 07-01 20:20 ?325次閱讀
    口罩佩戴<b class='flag-5'>檢測算法</b>

    人員跌倒識別檢測算法

    人員跌倒識別檢測算法是基于視頻的檢測方法,通過對目標人體監測,當目標人體出現突然倒地行為時,自動監測并觸發報警。人員跌倒識別檢測算法基于計算
    的頭像 發表于 06-30 11:47 ?456次閱讀
    人員跌倒識別<b class='flag-5'>檢測算法</b>

    安全帽佩戴檢測算法

    安全帽佩戴監控是鐵路工程施工人員安全管理中的重點和難點,它對檢測算法的準確 率與檢測速度都有較高的要求。本文提出種基于神經網絡架構搜索的安全帽佩戴檢測算法 NAS-YOLO。該神經網
    的頭像 發表于 06-26 22:22 ?404次閱讀
    安全帽佩戴<b class='flag-5'>檢測算法</b>

    OpenVINO? C# API部署YOLOv9目標檢測和實例分割模型

    YOLOv9模型是YOLO系列實時目標檢測算法中的最新版本,代表著該系列在準確性、速度和效率方面的又次重大飛躍。
    的頭像 發表于 04-03 17:35 ?898次閱讀
    OpenVINO? C# API部署YOLOv9<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>和實例分割模型

    AI驅動的雷達目標檢測:前沿技術與實現策略

    傳統的雷達目標檢測方法,主要圍繞雷達回波信號的統計特性進行建模,進而在噪聲和雜波的背景目標存在與否進行判決,常用的典型算法如似然比
    發表于 03-01 12:26 ?2860次閱讀
    AI驅動的雷達<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>:前沿技術與實現策略

    盤點一下高通CES 2024汽車創新技術

    在CES2024上,我們看到英特爾和AMD加入,加上原來的英偉達,高通需要和這些跨行的對手在個賽道卷,目前高通在數字座艙、云連接、人工智能和自動駕駛領域是有定的積累的,我們來盤點一下
    的頭像 發表于 01-13 15:22 ?1793次閱讀
    <b class='flag-5'>盤點</b><b class='flag-5'>一下</b>高通CES 2024汽車創新技術
    主站蜘蛛池模板: 直接黄91麻豆网站| 综合网天天| 伊人久久99| 免费人成a大片在线观看动漫 | 68日本xxxxxxxxx xx| 亚洲精品综合网在线8050影院| 国产逼逼视频| 香蕉爱爱网| 痴女在线播放免费视频| 福利视频自拍偷拍| 中文字幕第十页| 国内真实下药迷j在线观看 | 久久综合久色欧美婷婷| 人人插人人草| 中国成熟xxx视频| 狠狠五月婷婷| 国产精品成人一区二区| 亚洲成人免费在线观看| 俺来也久久| 曰本aaaaa毛片午夜网站| 日本国产高清色www视频在线| 我色综合| 最黄毛片| www.最色| 亚洲成人www| 久久精品视频5| 99色99| 九九热精品在线| 亚洲a在线播放| 最新看片网址| 日本不卡在线播放| 黄 色 片 在 线 看| 日韩激情淫片免费看| 日韩精品亚洲一级在线观看| 天天舔夜夜操| 与子乱刺激对白在线播放| 丁香花在线| 日本不卡在线视频| 国产高清美女一级a毛片| 亚洲欧洲一区二区三区在线观看| 久久青草91免费观看|