當(dāng)提到通信系統(tǒng)時(shí),比起單端電路,差分電路總是能提供更加優(yōu)良的性能。它們具有更高的線性度、抗共模干擾信號(hào)性能等。但是,相比較單端50歐姆系統(tǒng),差分電路顯得更神秘一些。某些RF工程師認(rèn)為很難設(shè)計(jì)、測(cè)試和調(diào)試它們,對(duì)于差分濾波器尤其如此。是時(shí)候揭開差分濾波器設(shè)計(jì)的神秘面紗了。
?RF信號(hào)鏈應(yīng)用中差分電路的優(yōu)點(diǎn)
原理:用戶利用差分電路可以達(dá)到比利用單端電路更高的信號(hào)幅度。在相同電源電壓下,差分信號(hào)可提供兩倍于單端信號(hào)的幅度,它還能提供更好的線性度和SNR性能。
圖1.差分輸出振幅
? 差分濾波器工作原理
? ? ? ? ?差分電路對(duì)外部EMI和附近信號(hào)的串?dāng)_具有很好的抗擾性。這是因?yàn)榻邮盏挠杏眯盘?hào)電壓加倍,噪聲對(duì)緊密耦合走線的影響在理論上是相同的,它們彼此抵消。差分信號(hào)產(chǎn)生的EMI往往也較低。這是因?yàn)樾盘?hào)電平的變化(dV/dt或dI/dt)產(chǎn)生相反的磁場(chǎng),再次相互抵消。
差分信號(hào)可抑制偶數(shù)階諧波。以下展示了連續(xù)波(CW)通過一個(gè)增益模塊的示例。當(dāng)使用一個(gè)單端放大器時(shí),如圖2所示,輸出可表示為公式1和公式2。
圖2.單端放大器
?
當(dāng)使用一個(gè)差分放大器時(shí),輸入和輸出如圖3所示,表示為公式3、公式4、公式5和公式6
圖3.差分放大器
理想情況下,輸出沒有任何偶數(shù)階諧波,使得差分電路成為通信系統(tǒng)一個(gè)更好的選擇。
理解和設(shè)計(jì)通信系統(tǒng)中的差分濾波器
截止頻率、轉(zhuǎn)折頻率或拐點(diǎn)頻率是系統(tǒng)頻率響應(yīng)的邊界,此時(shí)流經(jīng)系統(tǒng)的能量開始減少(衰減或反射),而不是自由通過。
? ? ?差分濾波器性能
圖4.3 dB截止頻率點(diǎn)
帶內(nèi)紋波指通帶內(nèi)插入損耗的波動(dòng)。
圖5.帶內(nèi)紋波
相位線性度指相移與目標(biāo)頻率范圍內(nèi)的頻率成比例的程度。
圖6.相位線性度
群延時(shí)衡量一個(gè)穿過受測(cè)器件的信號(hào)的各種正弦成分幅度包絡(luò)的時(shí)間延遲,它與各成分的頻率相關(guān)。
圖7.群延時(shí)
表1.濾波器比較
圖8.巴特沃茲濾波器S21響應(yīng)
圖9.橢圓濾波器S21響應(yīng)
圖10.貝塞爾濾波器S21響應(yīng)
圖11.切比雪夫I型濾波器S21響應(yīng)
圖12.切比雪夫II型濾波器S21響應(yīng)
通信接收鏈中的IF濾波器基本上是低通濾波器或帶通濾波器,它用于抑制混疊信號(hào)以及有源器件產(chǎn)生的雜散,包括諧波和IMD產(chǎn)物等。利用該濾波器,接收鏈可提供高SNR的信號(hào)供ADC分析。
切比雪夫I型濾波器具有良好的帶內(nèi)平坦度,阻帶內(nèi)滾降迅速且無均衡紋波響應(yīng),因而選擇它作為拓?fù)浣Y(jié)構(gòu)。
低通濾波器設(shè)計(jì)
由于接收機(jī)IF濾波器用于抑制雜散和混疊信號(hào),因此阻帶滾降越快越好,但更快的滾降意味著要使用更高階器件。一般不推薦采用很高階的濾波器,原因如下:
在設(shè)計(jì)和調(diào)試階段調(diào)諧困難。
量產(chǎn)困難:電容間和電感間存在差異,會(huì)造成每塊PCB板上的濾波器難以具有相同的響應(yīng)。
PCB尺寸較大。
一般使用七階或更低階的濾波器。同時(shí),當(dāng)器件的階數(shù)相同時(shí),若能承受更大的帶內(nèi)紋波,則可以選用更快的阻帶滾降,然后所需的響應(yīng)通過指定選定頻率點(diǎn)需要的衰減來定義。為了確定通帶中的最大紋波量,應(yīng)使該規(guī)格等于系統(tǒng)要求的最大限值,這樣有助于獲得更快的阻帶滾降。
為了確定濾波器的階數(shù),應(yīng)將目標(biāo)頻率除以濾波器的截止頻率,使其歸一化。例如,若要求帶內(nèi)紋波為0.1 dB,3dB截止頻率為100MHz。在250MHz時(shí),要求抑制性能為28dB,所以頻率比為2.5。三階低通濾波器可滿足這一要求。如果濾波器的源阻抗為200Ω,濾波器的負(fù)載阻抗也是200Ω,則RS/RL為1 — 使用電容作為第一元件。這樣用戶獲得歸一化的C1 = 1.433, L2 = 1.594, C3 = 1.433。如果fc為100MHz,使用公式7和公式8獲得最終結(jié)果。
其中:
CSCALED為最終電容值。LSCALED為最終電感值。Cn為低通原型電容元件值。Ln為低通原型電感元件值。RL為最終負(fù)載電阻值。fc為最終截止頻率。
C1SCALED = 1.433/(2π × 100 × 106 × 200) = 11.4 pFL2SCALED = (1.594 × 200)/(2π × 100 × 106) = 507.4 nHC3SCALED = 11.4 pF
? ? ?差分濾波器設(shè)計(jì)與電路圖
電路如圖13所示。
圖13.單端濾波器示例
將單端濾波器轉(zhuǎn)化為差分濾波器(參見圖14)。
圖14.單端濾波器轉(zhuǎn)化為差分濾波器
對(duì)各元件使用實(shí)際值,更新后的濾波器如圖15所示。
圖15.最終差分濾波器
注意,如果混頻器或IF放大器的輸出阻抗以及ADC的輸入阻抗為容性,則考慮使用電容作為第一元件和最后元件會(huì)更好。另外,第一電容和最后電容的容值調(diào)諧速率(至少0.5 pF)必須高于混頻器或IF放大器的輸出阻抗以及ADC輸入阻抗的容值。否則,調(diào)諧濾波器響應(yīng)將非常困難。
帶通濾波器設(shè)計(jì)
在通信系統(tǒng)中,當(dāng)IF頻率相當(dāng)高時(shí),需要濾除某些低頻雜散,例如半IF雜散。為此需設(shè)計(jì)帶通濾波器。對(duì)于帶通濾波器,低頻抑制和高頻抑制不必對(duì)稱。設(shè)計(jì)帶通抗混疊濾波器的簡(jiǎn)單方法是先設(shè)計(jì)一個(gè)低通濾波器,然后在濾波器最后一級(jí)的分流電容上并聯(lián)一個(gè)分流電感,用以限制低頻成分(分流電感是一個(gè)高通諧振極點(diǎn))。如果一級(jí)高通電感還不夠,可在第一級(jí)分流電容上再并聯(lián)一個(gè)分流電感,從而更好地抑制低頻雜散。增加分流電感之后,再次調(diào)諧所有元件以獲得正確的帶外抑制規(guī)格,然后最終確定濾波器元件值。
注意,對(duì)于帶通濾波器,一般不建議使用串聯(lián)電容,因?yàn)檫@會(huì)增加調(diào)諧和調(diào)試的難度。電容值通常相當(dāng)小,會(huì)受到寄生電容很大的影響。
應(yīng)用示例
以下是ADL5201和AD6641間濾波器設(shè)計(jì)的示例。ADL5201是一款高性能IF數(shù)字控制增益放大器(DGA),針對(duì)基站實(shí)IF接收機(jī)應(yīng)用或數(shù)字預(yù)失真(DPD)觀測(cè)路徑而設(shè)計(jì)。它具有30 dB增益控制范圍,線性度極高,OIP3達(dá)到50 dBm,電壓增益約為20 dB。 AD6641是一款250 MHz帶寬DPD觀測(cè)接收機(jī),集成一個(gè)12位500 MSPS ADC、一個(gè)16,000 × 12 FIFO和一個(gè)多模式后端,允許用戶通過串行端口檢索數(shù)據(jù)。該濾波器示例是一個(gè)DPD應(yīng)用。
下面是取自一個(gè)實(shí)際通信系統(tǒng)設(shè)計(jì)的一些帶通濾波器規(guī)格:○中心頻率:368.4 MHz○帶寬:240 MHz○輸入和輸出阻抗:150 Ω○帶內(nèi)紋波:0.2 dB○插入損耗:1 dB○帶外抑制:30 dB(614.4 MHz時(shí))
要完成該示例設(shè)計(jì):
從單端低通濾波器設(shè)計(jì)開始(參見圖16)。
圖16.單端低通濾波器
將單端濾波器變?yōu)椴罘譃V波器。源阻抗和負(fù)載阻抗保持不變,所有電容并聯(lián),所有串聯(lián)電感減半并放在另一差分路徑中(參見圖17)。
圖17.采用理想元件的差分低通濾波器
用實(shí)際值優(yōu)化元件的理想值(參見圖18)。
圖18.采用實(shí)際值的差分低通濾波器。
對(duì)于子系統(tǒng)級(jí)仿真,應(yīng)在輸入端增加 ADL5201 DGA S參數(shù)文件,并使用壓控電壓源來模擬濾波器輸出端的 AD6641 ADC。為將低通濾波器變?yōu)閹V波器,增加兩個(gè)分流電感:L7與C9并聯(lián),L8與C11并聯(lián)。C12代表AD6641輸入電容。R3和R4是放在AD6641輸入端的兩個(gè)負(fù)載電阻,用作濾波器的負(fù)載。AD6641輸入為高阻抗。調(diào)諧后的情況參見圖19。
采用理想元件的仿真結(jié)果如圖20所示。
圖20.采用理想電感的濾波器傳輸響應(yīng)。
用實(shí)際器件(例如Murata LQW18A)的電感S參數(shù)文件代替所有理想電感。插入損耗比使用理想電感略高。仿真結(jié)果略有變化,如圖21所示。
圖21.采用Murata LQW18A電感的濾波器傳輸響應(yīng)。
差分濾波器布局考慮
成對(duì)差分走線的長(zhǎng)度須相同。此規(guī)則源自這一事實(shí):差分接收器檢測(cè)正負(fù)信號(hào)跨過彼此的點(diǎn),即交越點(diǎn)。因此,信號(hào)須同時(shí)到達(dá)接收器才能正常工作。
差分對(duì)內(nèi)的走線布線須彼此靠近。如果一對(duì)中的相鄰線路之間的距離大于電介質(zhì)厚度的2倍,則其間的耦合會(huì)很小。此規(guī)則也是基于差分信號(hào)相等但相反這一事實(shí),如果外部噪聲同等地干擾兩個(gè)信號(hào),則其影響會(huì)互相抵消。同樣,如果走線并排布線,則差分信號(hào)在相鄰導(dǎo)線中引起的任何干擾噪聲都會(huì)被抵消。
同一差分對(duì)內(nèi)的走線間距在全長(zhǎng)范圍內(nèi)須保持不變。如果差分走線彼此靠近布線,它們將影響總阻抗。如果此間距在驅(qū)動(dòng)器與接收器之間變化不定,則一路上會(huì)存在阻抗不匹配,導(dǎo)致反射。
差分對(duì)之間的間距應(yīng)較寬,以使其間的串?dāng)_最小。
如果在同一層上使用銅皮鋪地,應(yīng)加大從差分走線到銅皮鋪地之間的間隙。推薦最小間隙為走線寬度的3倍。
圖19.差分帶通濾波器。
在靠近差分對(duì)內(nèi)偏斜源處引入少量彎彎曲曲的校正,從而降低這種偏斜(參見圖22)。
圖22.使用彎曲校正
差分對(duì)布線時(shí),應(yīng)避免急轉(zhuǎn)彎(90°)(參見圖23)。
圖23.避免90°彎曲
差分對(duì)布線時(shí),應(yīng)使用對(duì)稱布線(參見圖24)。若需要測(cè)試點(diǎn),應(yīng)避免引入走線分支,而且測(cè)試點(diǎn)應(yīng)對(duì)稱放置(參見圖25)。
圖24.對(duì)稱布線指南
圖25.避免走線分支
就降低對(duì)濾波器元件值的要求,減少印刷電路板(PCB)上的調(diào)諧工作量而言,寄生電容和電感應(yīng)盡可能小。與濾波器設(shè)計(jì)中的電感設(shè)計(jì)值相比,寄生電感可能微不足道。寄生電容對(duì)差分IF濾波器更為重要。IF濾波器設(shè)計(jì)中的電容只有幾pF。如果寄生電容達(dá)到數(shù)十分之一pF,濾波器響應(yīng)就會(huì)受到相當(dāng)大的影響。為了防止寄生電容影響,一個(gè)良好的做法是避免差分布線區(qū)域和電源扼流圈下有任何接地或電源層。
ADI公司接收器參考設(shè)計(jì)板(參見圖26)提供了差分濾波器PCB布局的一個(gè)示例。這顯示了 ADL5201和AD6649之間有一個(gè)五階濾波器。AD6649是一款14位250 MHz流水線式ADC,具有非常好的SNR性能。
過濾面積,下方無接地層和電源層差分走線,長(zhǎng)度相同,保持接近和恒定
圖26.差分電路PCB布局設(shè)計(jì)示例
評(píng)論
查看更多