雙向晶閘管工作原理:雙向可控硅具有兩個方向輪流導通、關斷的特性。雙向可控硅實質上是兩個反并聯的單向可控硅,是由NPNPN五層半導體形成四個PN結構成、有三個電極的半導體器件。主電極的構造是對稱的(都從N層引出),它的電極不像單向可控硅那樣分別叫陽極和陰極,把與控制極相近的叫做第一電極A1,另一個叫做第二電極A2。雙向可控硅的主要缺點是承受電壓上升率的能力較低。這是雙向可控硅在一個方向導通結束時,硅片在各層中的載流子還沒有回到截止的,采取相應的保護措施。雙向可控硅元件主要用于交流控制電路,如溫度控制、燈光控制、防爆交流開關以及直流電機調速和換向等電路。
下面講一下可控硅的工作原理:
1、可控硅元件的結構
不管可控硅的外形如何,它們的管芯都是由P型硅和N型硅組成的四層P1N1P2N2結構。見圖1。它有三個PN結(J1、J2、J3),從J1結構的P1層引出陽極A,從N2層引出陰級K,從P2層引出控制極G,所以它是一種四層三端的半導體器件。
2、 工作原理
可控硅是P1N1P2N2四層三端結構元件,共有三個PN結,分析原理時,可以把它看作由一個PNP管和一個NPN管所組成,其等效圖解如圖1所示
當陽極A加上正向電壓時,BG1和BG2管均處于放大狀態。此時,如果從控制極G輸入一個正向觸發信號,BG2便有基流ib2流過,經BG2放大,其集電極電流ic2=β2ib2。因為BG2的集電極直接與BG1的基極相連,所以ib1=ic2。此時,電流ic2再經BG1放大,于是BG1的集電極電流ic1=β1ib1=β1β2ib2。這個電流又流回到BG2的基極,表成正反饋,使ib2不斷增大,如此正向饋循環的結果,兩個管子的電流劇增,可控硅使飽和導通。
由于BG1和BG2所構成的正反饋作用,所以一旦可控硅導通后,即使控制極G的電流消失了,可控硅仍然能夠維持導通狀態,由于觸發信號只起觸發作用,沒有關斷功能,所以這種可控硅是不可關斷的。
由于可控硅只有導通和關斷兩種工作狀態,所以它具有開關特性,這種特性需要一定的條件才能轉化,此條件見表1
可控硅的基本伏安特性見圖2
圖2 可控硅基本伏安特性
(1)反向特性
當控制極開路,陽極加上反向電壓時(見圖3),J2結正偏,但J1、J2結反偏。此時只能流過很小的反向飽和電流,當電壓進一步提高到J1結的雪崩擊穿電壓后,接差J3結也擊穿,電流迅速增加,圖3的特性開始彎曲,如特性OR段所示,彎曲處的電壓URO叫“反向轉折電壓”。此時,可控硅會發生永久性反向
(2)正向特性
當控制極開路,陽極上加上正向電壓時(見圖4),J1、J3結正偏,但J2結反偏,這與普通PN結的反向特性相似,也只能流過很小電流,這叫正向阻斷狀態,當電壓增加,圖3的特性發生了彎曲,如特性OA段所示,彎曲處的是UBO叫:正向轉折電壓
圖4 陽極加正向電壓
由于電壓升高到J2結的雪崩擊穿電壓后,J2結發生雪崩倍增效應,在結區產生大量的電子和空穴,電子時入N1區,空穴時入P2區。進入N1區的電子與由P1區通過J1結注入N1區的空穴復合,同樣,進入P2區的空穴與由N2區通過J3結注入P2區的電子復合,雪崩擊穿,進入N1區的電子與進入P2區的空穴各自不能全部復合掉,這樣,在N1區就有電子積累,在P2區就有空穴積累,結果使P2區的電位升高,N1區的電位下降,J2結變成正偏,只要電流稍增加,電壓便迅速下降,出現所謂負阻特性,見圖3的虛線AB段。
這時J1、J2、J3三個結均處于正偏,可控硅便進入正向導電狀態---通態,此時,它的特性與普通的PN結正向特性相似,見圖2中的BC段
2、 觸發導通
圖5 陽極和控制極均加正向電壓
圖1、可控硅結構示意圖和符號圖
評論
查看更多