一般而言,開關器件具有兩種工作狀態:第一種狀態被稱為接通
,此時器件的阻抗很小,相當于短路;第二種狀態是斷開,此時器件的阻抗很大,相當于開路。
在數字系統中,晶體管基本上工作于開關狀態。對開關特性的研究,就是具體分析晶體管在導通和截止之間的轉換問題。晶體管的開關速度可以很快,可達每秒百萬次數量級,即開關轉換在微秒甚至納秒級的時間內完成。
二極管的開關特性表現在正向導通與反向截止這樣兩種不同狀態之間的轉換過程。二極管從反向截止到正向導通與從正向導通到反向截止相比所需的時間很短,一般可以忽略不計,因此下面著重討論二極管從正向導通到反向截止的轉換過程。
在上圖所示的硅二極管電路中加入一個如下圖所示的輸入電壓。在0―t1時間內,輸入為+VF,二極管導通,電路中有電流流通。
設VD為二極管正向壓降(硅管為0.7V左右),當VF遠大于VD時,VD可略去不計,則
在t1時,V1突然從+VF變為-VR。在理想情況下 ,二極管將立刻轉為截止,電路中應只有很小的反向電流。但實際情況是,二極管并不立刻截止,而是先由正向的IF變到一個很大的反向電流IR=VR/RL,這個電流維持一段時間tS后才開始逐漸下降,再經過tt后 ,下降到一個很小的數值0.1IR,這時二極管才進人反向截止狀態,如下圖所示。
通常把二極管從正向導通轉為反向截止所經過的轉換過程稱為反向恢復過程。其中tS稱為存儲時間,tt稱為渡越時間,tre=ts+tt稱為反向恢復時間。
由于反向恢復時間的存在,使二極管的開關速度受到限制。
產生上述現象的原因是由于二極管外加正向電壓VF時,載流子不斷擴散而存儲的結果。當外加正向電壓時P區空穴向N區擴散,N區電子向P區擴散,這樣,不僅使勢壘區(耗盡區)變窄,而且使載流子有相當數量的存儲,在P區內存儲了電子,而在N區內存儲了空穴
,它們都是非平衡少數載流于,如下圖所示。
空穴由P區擴散到N區后,并不是立即與N區中的電子復合而消失,而是在一定的路程LP(擴散長度)內,一方面繼續擴散,一方面與電子復合消失,這樣就會在LP范圍內存儲一定數量的空穴,并建立起一定空穴濃度分布,靠近結邊緣的濃度最大,離結越遠,濃度越小
。正向電流越大,存儲的空穴數目越多,濃度分布的梯度也越大。電子擴散到P區的情況也類似,下圖為二極管中存儲電荷的分布。
我們把正向導通時,非平衡少數載流子積累的現象叫做電荷存儲效應。
當輸入電壓突然由+VF變為-VR時P區存儲的電子和N區存儲的空穴不會馬上消失,但它們將通過下列兩個途徑逐漸減少:
① 在反向電場作用下,P區電子被拉回N區,N區空穴被拉回P區,形成反向漂移電流IR,如下圖所示;
② 與多數載流子復合。
在這些存儲電荷消失之前,PN結仍處于正向偏置,即勢壘區仍然很窄,PN結的電阻仍很小,與RL相比可以忽略,所以此時反向電流IR=(VR+VD)/RL。VD表示PN結兩端的正向壓降,一般 VR>>VD,即 IR=VR/RL。在這段期間,IR基本上保持不變,主要由VR和RL所決定。
經過時間ts后P區和N區所存儲的電荷已顯著減小,勢壘區逐漸變寬,反向電流IR逐漸減小到正常反向飽和電流的數值,經過時間tt
,二極管轉為截止。
由上可知,二極管在開關轉換過程中出現的反向恢復過程,實質上由于電荷存儲效應引起的,反向恢復時間就是存儲電荷消失所需要的時間。
二極管從截止轉為正向導通所需的時間稱為開通時間。
這個時間同反向恢復時間相比是很短的。這是由于PN結在正向偏壓作用下,勢壘區迅速變窄,有利于少數載流子的擴散,正向電阻很小,因而它在導通過程中及導通以后,其正向壓降都很小,比輸入電壓VF小得多,故電路中的正向電流 IF=VR/RL ,它由外電路的參數決定,而幾乎與二極管無關。因此,只要電路在t=0時加入+VF的電壓
,回路的電流幾乎是立即達到 VF/RL。這就是說 ,二極管的開通時間是很短的,它對開關速度的影響很小,可以忽略不計。
評論
查看更多