卡諾圖的構(gòu)成及其簡(jiǎn)法
????卡諾圖是一種平面方格圖,每個(gè)小方格代表一個(gè)最小項(xiàng),故又稱為最小項(xiàng)方格圖。
????1.結(jié)構(gòu)特點(diǎn)??
????卡諾圖中最小項(xiàng)的排列方案不是唯一的,圖2.5(a)、(b)、(c)、(d)分別為2變量、3變量、4變量、5變量卡諾圖的一種排列方案。圖中,變量的坐標(biāo)值0表示相應(yīng)變量的反變量,1表示相應(yīng)變量的原變量。各小方格依變量順序取坐標(biāo)值,所得二進(jìn)制數(shù)對(duì)應(yīng)的十進(jìn)制數(shù)即相應(yīng)最小項(xiàng)的下標(biāo)i。
????在五變量卡諾圖中,為了方便省略了符號(hào)“m”,直接標(biāo)出m的下標(biāo)i 。
????從圖2.5所示的各卡諾圖可以看出,卡諾圖上變量的排列規(guī)律使最小項(xiàng)的相鄰關(guān)系能在圖形上清晰地反映出來(lái)。具體地說(shuō),在n個(gè)變量的卡諾圖中,能從圖形上直觀、方便地找到每個(gè)最小項(xiàng)的n個(gè)相鄰最小項(xiàng)。以四變量卡諾圖為例,圖中每個(gè)最小項(xiàng)應(yīng)有4個(gè)相鄰最小項(xiàng),如m5的4個(gè)相鄰最小項(xiàng)分別是m1,m4,m7,m13,這4個(gè)最小項(xiàng)對(duì)應(yīng)的小方格與m5對(duì)應(yīng)的小方格分別相連,也就是說(shuō)在幾何位置上是相鄰的,這種相鄰稱為幾何相鄰。而m2則不完全相同,它的4個(gè)相鄰最小項(xiàng)除了與之幾何相鄰的m3和m6之外,另外兩個(gè)是處在“相對(duì)”位置的m0(同一列的兩端)和m10(同一行的兩端)。這種相鄰似乎不太直觀,但只要把這個(gè)圖的上、下邊緣連接,卷成圓筒狀,便可看出m0和m2在幾何位置上是相鄰的。同樣,把圖的左、右邊緣連接,便可使m2和m10相鄰。通常把這種相鄰稱為相對(duì)相鄰。除此之外,還有“相重”位置的最小項(xiàng)相鄰,如五變量卡諾圖中的m3,除了幾何相鄰的m1,m2,m7和相對(duì)相鄰的m11外,還與m19相鄰。對(duì)于這種情形,可以把卡諾圖左邊的矩形重疊到右邊矩形之上來(lái)看,凡上下重疊的最小項(xiàng)相鄰,這種相鄰稱為重疊相鄰。??
????歸納起來(lái),卡諾圖在構(gòu)造上具有以下兩個(gè)特點(diǎn):
????☆ n個(gè)變量的卡諾圖由2n個(gè)小方格組成,每個(gè)小方格代表一個(gè)最小項(xiàng);
????☆ 卡諾圖上處在相鄰、相對(duì)、相重位置的小方格所代表的最小項(xiàng)為相鄰最小項(xiàng)。?
????二 卡諾圖的性質(zhì)
????卡諾圖的構(gòu)造特點(diǎn)使卡諾圖具有一個(gè)重要性質(zhì):可以從圖形上直觀地找出相鄰最小項(xiàng)合并。合并的理論依據(jù)是并項(xiàng)定理AB+AB=A。例如,
????根據(jù)定理AB+AB=A和相鄰最小項(xiàng)的定義,兩個(gè)相鄰最小項(xiàng)可以合并為一個(gè)與項(xiàng)并消去一個(gè)變量。例如,4變量最小項(xiàng)ABCD和ABCD相鄰,可以合并為ABD;ABCD和ABCD相鄰,可以合并為ABD;而與項(xiàng)ABD和ABD又為相鄰與項(xiàng),故按同樣道理可進(jìn)一步將兩個(gè)相鄰與項(xiàng)合并為BD。
????用卡諾圖化簡(jiǎn)邏輯函數(shù)的基本原理就是把上述邏輯依據(jù)和圖形特征結(jié)合起來(lái),通過(guò)把卡諾圖上表征相鄰最小項(xiàng)的相鄰小方格“圈”在一起進(jìn)行合并,達(dá)到用一個(gè)簡(jiǎn)單“與”項(xiàng)代替若干最小項(xiàng)的目的。
????通常把用來(lái)包圍那些能由一個(gè)簡(jiǎn)單“與”項(xiàng)代替的若干最小項(xiàng)的“圈”稱為卡諾圈。
???三 邏輯函數(shù)在卡諾圖上的表示??
????1.給定邏輯函數(shù)為標(biāo)準(zhǔn)“與-或”表達(dá)式
????當(dāng)邏輯函數(shù)為標(biāo)準(zhǔn)“與-或”表達(dá)式時(shí),只需在卡諾圖上找出和表達(dá)式中最小項(xiàng)對(duì)應(yīng)的小方格填上1,其余小方格填上0,即可得到該函數(shù)的卡諾圖。??
????例如,3變量函數(shù)F(A,B,C)=∑m(1,2,3,7)的卡諾圖如圖2.6所示。
圖2.6 函數(shù)F(A,B,C)=∑m(1,2,3,7)的卡諾圖
????
????2.邏輯函數(shù)為一般“與-或”表達(dá)式
????當(dāng)邏輯函數(shù)為一般“與-或”表達(dá)式時(shí),可根據(jù)“與”的公共性和“或”的疊加性作出相應(yīng)卡諾圖。
????例如,4變量函數(shù)F(A,B,C,D)=AB+CD+A·BC的卡諾圖如圖2.7所示。
圖2.7??函數(shù)F(A,B,C,D)=AB+CD+A·BC的卡諾圖
????填寫該函數(shù)卡諾圖時(shí),只需在4變量卡諾圖上依次找出和“與項(xiàng)”AB、CD、A·BC對(duì)應(yīng)的小方格填上1,便可得到該函數(shù)的卡諾圖。
????當(dāng)邏輯函數(shù)表達(dá)式為其他形式時(shí),可將其變換成上述形式后再作卡諾圖。
????為了敘述的方便,通常將卡諾圖上填1的小方格稱為1方格,填0的小方格稱為0方格。0方格有時(shí)用空格表示。
????四 卡諾圖上最小項(xiàng)的合并規(guī)律
????卡諾圖的一個(gè)重要特征是,它從圖形上直觀、清晰地反映了最小項(xiàng)的相鄰關(guān)系。當(dāng)一個(gè)函數(shù)用卡諾圖表示后,究竟哪些最小項(xiàng)可以合并呢?下面以2、3、4變量卡諾圖為例予以說(shuō)明。
????1.兩個(gè)小方格相鄰, 或處于某行(列)兩端時(shí),所代表的最小項(xiàng)可以合并,合并后可消去一個(gè)變量。
????例如,圖2.8給出了2、3、4變量卡諾圖上兩個(gè)相鄰最小項(xiàng)合并的典型情況的。
圖2.8 兩個(gè)相鄰最小項(xiàng)合并的情況
????2.四個(gè)小方格組成一個(gè)大方格、或組成一行(列)、或處于相鄰兩行(列)的兩端、或處于四角時(shí),所的表的最小項(xiàng)可以合并,合并后可消去兩個(gè)變量。
????例如,圖2.9給出了3、4變量卡諾圖上四個(gè)相鄰最小項(xiàng)合并的典型情況的。
圖2.9 四個(gè)相鄰最小項(xiàng)合并的情況
????3.八個(gè)小方格組成一個(gè)大方格、或組成相鄰的兩行(列)、或處于兩個(gè)邊行(列)時(shí),所代表的最小項(xiàng)可以合并,合并后可消去三個(gè)變量。
????例如,圖2.10給出了3、4變量卡諾圖上八個(gè)相鄰最小項(xiàng)合并的典型情況的。
圖2.10 八個(gè)相鄰最小項(xiàng)合并的情況
????至此,以3、4變量卡諾圖為例,討論了2,4,8個(gè)最小項(xiàng)的合并方法。依此類推,不難得出n個(gè)變量卡諾圖中最小項(xiàng)的合并規(guī)律。
????歸納起來(lái),n個(gè)變量卡諾圖中最小項(xiàng)的合并規(guī)律如下:
????(1)卡諾圈中小方格的個(gè)數(shù)必須為2m個(gè),m為小于或等于n的整數(shù)。
????(2)卡諾圈中的2m個(gè)小方格有一定的排列規(guī)律,具體地說(shuō),它們含有m個(gè)不同變量,(n-m)個(gè)相同變量。
????(3)卡諾圈中的2m個(gè)小方格對(duì)應(yīng)的最小項(xiàng)可用(n-m)個(gè)變量的“與”項(xiàng)表示,該“與”項(xiàng)由這些最小項(xiàng)中的相同變量構(gòu)成。
????(4)當(dāng)m=n時(shí),卡諾圈包圍了整個(gè)卡諾圖,可用1表示,即n個(gè)變量的全部最小項(xiàng)之和為1。
????五、卡諾圖化簡(jiǎn)邏輯函數(shù)
????1.幾個(gè)定義
????蘊(yùn)涵項(xiàng):在函數(shù)的“與-或”表達(dá)式中,每個(gè)“與”項(xiàng)被稱為該函數(shù)的蘊(yùn)涵項(xiàng)(Implicant)。
????顯然,在函數(shù)卡諾圖中,任何一個(gè)1方格所對(duì)應(yīng)的最小項(xiàng)或者卡諾圈中的2m個(gè)1方格所對(duì)應(yīng)的“與”項(xiàng)都是函數(shù)的蘊(yùn)涵項(xiàng)。
????質(zhì)蘊(yùn)涵項(xiàng):若函數(shù)的一個(gè)蘊(yùn)涵項(xiàng)不是該函數(shù)中其他蘊(yùn)涵項(xiàng)的子集,則此蘊(yùn)涵項(xiàng)稱為質(zhì)蘊(yùn)涵項(xiàng)(Prime Implicant),簡(jiǎn)稱為質(zhì)項(xiàng)。
????顯然,在函數(shù)卡諾圖中,按照最小項(xiàng)合并規(guī)律,如果某個(gè)卡諾圈不可能被其他更大的卡諾圈包含,那么,該卡諾圈所對(duì)應(yīng)的“與”項(xiàng)為質(zhì)蘊(yùn)涵項(xiàng)。
????必要質(zhì)蘊(yùn)涵項(xiàng):若函數(shù)的一個(gè)質(zhì)蘊(yùn)涵項(xiàng)包含有不被函數(shù)的其他任何質(zhì)蘊(yùn)涵項(xiàng)所包含的最小項(xiàng),則此質(zhì)蘊(yùn)涵項(xiàng)被稱為必要質(zhì)蘊(yùn)涵項(xiàng)(Essential Prime Implicant),簡(jiǎn)稱為必要質(zhì)項(xiàng)。
????在函數(shù)卡諾圖中,若某個(gè)卡諾圈包含了不可能被任何其他卡諾圈包含的1方格,那么,該卡諾圈所對(duì)應(yīng)的“與”項(xiàng)為必要質(zhì)蘊(yùn)涵項(xiàng)。
????2.求函數(shù)最簡(jiǎn)“與-或”表達(dá)式
????(1)一般步驟:
????第一步:作出函數(shù)的卡諾圖。
????第二步:在卡諾圖上圈出函數(shù)的全部質(zhì)蘊(yùn)涵項(xiàng)。按照卡諾圖上最小項(xiàng)的合并規(guī)律,對(duì)函數(shù)F卡諾圖中的1方格畫卡諾圈。為了圈出全部質(zhì)蘊(yùn)涵項(xiàng),畫卡諾圈時(shí)在滿足合并規(guī)律的前題下應(yīng)盡可能大,若卡諾圈不可能被更大的卡諾圈包圍,則對(duì)應(yīng)的“與”項(xiàng)為質(zhì)蘊(yùn)涵項(xiàng)。
????第三步:從全部質(zhì)蘊(yùn)涵項(xiàng)中找出所有必要質(zhì)蘊(yùn)涵項(xiàng)。在卡諾圖上只被一個(gè)卡諾圈包圍的最小項(xiàng)被稱為必要最小項(xiàng),包含必要最小項(xiàng)的質(zhì)蘊(yùn)涵項(xiàng)即必要質(zhì)蘊(yùn)涵項(xiàng)。為了保證所得結(jié)果無(wú)一遺漏地覆蓋函數(shù)的所有最小項(xiàng),函數(shù)表達(dá)式中必須包含所有必要質(zhì)蘊(yùn)涵項(xiàng)。
????第四步:求出函數(shù)的最簡(jiǎn)質(zhì)蘊(yùn)涵項(xiàng)集。若函數(shù)的所有必要質(zhì)蘊(yùn)涵項(xiàng)尚不能覆蓋卡諾圖上的所有1方格,則從剩余質(zhì)蘊(yùn)涵項(xiàng)中找出最簡(jiǎn)的所需質(zhì)蘊(yùn)涵項(xiàng),使它和必要質(zhì)蘊(yùn)涵項(xiàng)一起構(gòu)成函數(shù)的最小覆蓋。
歸納起來(lái),卡諾圖化簡(jiǎn)的原則是:
???? ☆ 在覆蓋函數(shù)中的所有最小項(xiàng)的前提下,卡諾圈的個(gè)數(shù)達(dá)到最少。
???? ☆ 在滿足合并規(guī)律的前題下卡諾圈應(yīng)盡可能大。
???? ☆ 根據(jù)合并的需要,每個(gè)最小項(xiàng)可以被多個(gè)卡諾圈包圍。
????
????3.求函數(shù)的最簡(jiǎn)“或-與”表達(dá)式
????當(dāng)需要求一個(gè)函數(shù)的最簡(jiǎn)“或-與”表達(dá)式時(shí),可采用“兩次取反法”。
????具體如下:
????☆ 先求出函數(shù)F的反函數(shù)F的最簡(jiǎn)“與-或”表達(dá)(合并卡諾圖上的0方格);
????☆ 然后對(duì)F的最簡(jiǎn)“與-或”表達(dá)式取反,從而得到函數(shù)F的最簡(jiǎn)“或-與”表達(dá)式。
????例如, 用卡諾圖求邏輯函數(shù)F(A,B,C,D)=∑m(3,4,6,7,11,12,13,14,15)的最簡(jiǎn)“或-與”表達(dá)式。
????解 首先畫出函數(shù)F的卡諾圖如圖2.13所示。
圖2.13
????圖中,F(xiàn)的0方格即反函數(shù)F的1方格,它們代表F的各個(gè)最小項(xiàng),將全部0方格合并就可得到反函數(shù)F的最簡(jiǎn)“與-或”表達(dá)式
F(A,B,C,D)=AB+CD+BD
????再對(duì)上述函數(shù)式兩邊取反,即可求得函數(shù)的最簡(jiǎn)“或-與”表達(dá)式
?????????????????????????????????????????
????卡諾圖化簡(jiǎn)邏輯函數(shù)具有方便、直觀、容易掌握等優(yōu)點(diǎn)。但依然帶有試湊性。尤其當(dāng)變量個(gè)數(shù)大于6時(shí),畫圖以及對(duì)圖形的識(shí)別都變得相當(dāng)復(fù)雜。
????為了克服它的不足,引入了另一種化簡(jiǎn)方法--列表化簡(jiǎn)法。
評(píng)論
查看更多