將運算放大器作為比較器使用
由于運算放大器一般都是雙路/四路的配置,用戶可以考慮將多出來的放大器做為比較器來用。如前所述,此時有不少地方需注意。首先,時間選擇很關鍵。當把運算放大器用作比較器時,其本身的增益帶寬乘積、群延遲和壓擺率等參數很可能會因內部頻率補償和飽和效應而誤產生變化。對于優化的單器件來說,這種應用不失為一種經濟增值方案。可是,對于比較復雜和可能阻礙性能發揮的四路器件來說,這種方案不但所占的空間較多,而且需要花費更多時間測試和調試以確
保運算放大器的特性能夠配合。運放用作比較器時需要注意以下幾點:
·細閱數據表上敘述的運放拓撲和提示信息。
·注意源阻抗、共模輸入范圍和差分輸入范圍。
·放大器在過驅時的開關速度并計劃為這參數進行大型擴展。
·注意溫度變化帶來的影響。
·通過檢查負載阻抗、電源水平和電路的穩定性來確保輸出已正確地連接到下一級。
·小心處理電路的設計和布局,例如即使只有很微量的輸出通過分布電容和/或高輸入阻抗被正反饋引入到輸入端,都有可能引起振蕩。
現代高速比較器
現今業界常用的比較器大多數是經過優化設計的,可為系統帶來增值效益。最普遍的比較器應用類別是電平平移。現今,TTL和CMOS邏輯電平均已被廣泛采用。對于高速應用而言,還可采用ECL(發射極耦合邏輯)、RSPECL(擺幅削減正發射極耦合邏輯)或LVDS(低壓差分信號)。當需要從電纜和線路連接IC和FPGA,或在背板內的信號速度處于由每秒數百兆位至數千兆位的高速范圍時,上述方案便會成為首選。LMH7220和 LMH7322便是可用作為高速/超高速電平比較變換的高速比較器件。
圖2表示出一個LMH7322雙高速比較器,并且以ECL變換到RSPECL的轉換器方式實現。ECL高速邏輯已經沿用了很多年,尤其是供軍事或測量用以及工業用的高檔設置,而且它們屬于負電壓電平參考信號(-5.2V接地),難以連接到其它分離電源或單電源系統。幸而,LMH7322不單可有效解決上述的問題,與此同時比較起一般的邏輯電平移位器,它可提供給設計人員更大的自由度。該比較器在輸入和輸出電路上擁有不同的電源引腳,而其電源可以是由2.7V至12V的單一電源,又或是由±6V至±1.35V的分離電源。器件在輸入時的共模范圍可超出最低的電源電平200mV,從而令能在如此低的輸入信號電平下感測到細微的信號。在高邊上,共模范圍受到1.5V的VCCI的限制,但需配合2.7V的VCCI和VCCO,還是有可能在輸出上提供PECL邏輯電平。
圖2 ECL 到 RSPECL 的電平變換
假如典型的上升和下降時間為160ps,而典型的傳播延遲則為700ps,那便可促使該比較器為高速至每秒數千兆位的信號進行緩沖和電平平移,從而使電路適合應用在高速數據、時移、緩沖,或是來自電纜或背板的信號恢復。一個可調節的滯后可通過HYST引腳來施行,這做法對于失真信號或DC耦合線路或移動緩慢的信號來說最為受用,因為這可避免出現不必要的開關和觸發。圖2中的應用電路表示出輸入VCCI信號是處于系統接地電平,而VCCO電平和VEE電平則分別處于+5V和-5.2V(這便是ECL驅動器負電源電平)。此外,輸出電壓將可符合RSPECL的規格。同一個器件可以用來介接到其他的邏輯電平,只需稍為調節VCCI和VCCO及VEE電壓電平便可。加入例如是50W的適當線路端接是有可能的,圖3所示為一基本端接例子。
圖3中的差分輸出以一個跟隨著電源電流的發射極來實現,并且確保兩個輸出引腳之間的擺幅差別有400mV。假如這里采用有源端接,那電壓便會低于VCCO電平2V,否則每當端接到芯片的最負電源時,便需計算出正確的負載電阻。
圖3 LMH7322的輸出線路端接例子
此外,上升/下降時間或帶有消散的傳播延遲等參數均需要慎重考慮,而且它們不是全部都被規定。消散可以因共模、過驅和壓擺率的變化而引致,從而影響傳播延遲、工作周期和抖動。以LMH7322為例,過驅消散或比較20mV至1V過驅的變化為75ps,在這情況下會大概增加本身的傳播延遲約10%。
評論
查看更多