電源濾波器簡介
電源濾波器是由電容、電感和電阻組成的濾波電路,又名“電源EMI濾波器”,或是“EMI電源濾波器”,一種無源雙向網絡,它的一端是電源,另一端是負載。電源濾波器的原理就是一種——阻抗適配網絡:電源濾波器輸入、輸出側與電源和負載側的阻抗適配越大,對電磁干擾的衰減就越有效。濾波器可以對電源線中特定頻率的頻點或該頻點以外的頻率進行有效濾除,得到一個特定頻率的電源信號,或消除一個特定頻率后的電源信號。
電源濾波器就是對電源線中特定頻率的頻點或該頻點以外的頻率進行有效濾除的電器設備。電源濾波器的功能就是通過在電源線中接入電源濾波器,得到一個特定頻率的電源信號,或消除一個特定頻率后的電源信號。
利用電源濾波器的這個特性,可以將通過電源濾波器后的一個方波群或復合噪波,變成一個特定頻率的正弦波。
大功率電源的濾波器如Satons、UBS、變頻器等將會產生大量諧波電流,這類濾波器需采用有源電力濾波器APF。APF可對2~50次諧波電流進行濾除。
選電源濾波器的目的是抑制電磁噪聲,功能就是通過在電源線中接入電源濾波器,得到一個特定頻率的電源信號,或消除一個特定頻率后的電源信號。在使用的時候我們就需要了解電源濾波器方面的知識,這樣可以防止不必要的損失,而在使用的時候我們還需要了解如何選擇電源濾波器。
電源濾波器參數
1、中心頻率(Center Frequency):濾波器通帶的頻率f0,一般取f0=(f1+f2)/2,f1、f2為帶通或帶阻濾波器左、右相對下降1dB或3dB邊頻點。窄帶濾波器常以插損最小點為中心頻率計算通帶帶寬。
2、截止頻率(Cutoff Frequency):指低通濾波器的通帶右邊頻點及高通濾波器的通帶左邊頻點。通常以1dB或3dB相對損耗點來標準定義。相對損耗的參考基準為:低通以DC處插損為基準,高通則以未出現寄生阻帶的足夠高通帶頻率處插損為基準。
3、通帶帶寬(BWxdB):指需要通過的頻譜寬度,BWxdB=(f2-f1)。f1、f2為以中心頻率f0處插入損耗為基準,下降X(dB)處對應的左、右邊頻點。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征濾波器通帶帶寬參數。分數帶寬(fractional bandwidth)=BW3dB/f0×100[%],也常用來表征濾波器通帶帶寬。
4、插入損耗(Insertion Loss):由于濾波器的引入對電路中原有信號帶來的衰耗,以中心或截止頻率處損耗表征,如要求全帶內插損需強調。
5、紋波(Ripple):指1dB或3dB帶寬(截止頻率)范圍內,插損隨頻率在損耗均值曲線基礎上波動的峰-峰值。
6、帶內波動(Passband Riplpe):通帶內插入損耗隨頻率的變化量。1dB帶寬內的帶內波動是1dB。
7、帶內駐波比(VSWR):衡量濾波器通帶內信號是否良好匹配傳輸的一項重要指標。理想匹配VSWR=1:1,失配時VSWR》1。對于一個實際的濾波器而言,滿足VSWR《1.5:1的帶寬一般小于BW3dB,其占BW3dB的比例與濾波器階數和插損相關。
8、回波損耗(Return Loss):端口信號輸入功率與反射功率之比的分貝(dB)數,也等于|20Log10ρ|,ρ為電壓反射系數。輸入功率被端口全部吸收時回波損耗為無窮大。
9、阻帶抑制度:衡量濾波器選擇性能好壞的重要指標。該指標越高說明對帶外干擾信號抑制的越好。通常有兩種提法:一種為要求對某一給定帶外頻率fs抑制多少dB,計算方法為fs處衰減量As-IL;另一種為提出表征濾波器幅頻響應與理想矩形接近程度的指標——矩形系數(KxdB》1),KxdB=BWxdB/BW3dB,(X可為40dB、30dB、20dB等)。濾波器階數越多矩形度越高——即K越接近理想值1,制作難度當然也就越大。
10、延遲(Td):指信號通過濾波器所需要的時間,數值上為傳輸相位函數對角頻率的導數,即Td=df/dv。
11、帶內相位線性度:該指標表征濾波器對通帶內傳輸信號引入的相位失真大小。按線性相位響應函數設計的濾波器具有良好的相位線性度。
電源濾波器選型
1、額定電壓
額定電壓是電源EMI濾波器用在指定電源頻率時的工作電壓,也是濾波器最高允許的電壓值。如用在50Hz單相電源 的 濾波器,額定電壓為250V;用在50Hz三相電源的濾波器,額定電壓為440V.若輸入濾波器的電壓過高,會使內部電容器損壞。
2、額定電流
額定電流(Ir)是在額定電壓和指定環境溫度條件下所允許的最大連續工作電流。
隨著環境溫度的升高,或由于電感導線的銅損,磁芯損耗以及周圍環境溫度等原因導致工作溫度高于室溫,這時候就難以確保插入損耗的性能。我們應該根據實際可能的最大工作電流和工作環境溫度來選擇濾波器的額定電流。
除特殊說明外,EMI濾波器說明書給出的額定電流均為室溫+25℃(標稱溫度)的值,同樣給定的典型插入損耗或曲線也均指+25℃的值。最大工作電流(Imax)、額定電流與溫度之間的存在如下關系: 字串3 式1.0中:Imax為最大工作電流,Ir為室溫下額定工作電流,Tmax為最高的工作溫度+85℃,Ta為實際工作溫度,Tr為室溫+25℃。根據式2.0,Imax/Ir與Ta的關系舉例說明:+25℃,Imax=Ir;+45℃,Imax=0.816Ir;+85℃,Imax=0. 另外,在國外一些濾波器公司規定,+40℃(標稱溫度)為工作電流值Ir 。
IEC氣候等級為25/085時,指定環境溫度為+40℃(標稱溫度)條件下,查取其他環境溫度所允許的工作電流曲線。
影響工作電流和環境關系的主要原因之一就是濾波器中的軟磁材料。EMI濾波器一般采用高磁導率軟磁材料錳鋅鐵氧體,初始磁導率μi=7000~10000,但其居里點溫度不高,優質的僅為130℃左右。磁導率越高,居里點溫度越低,過居里點后磁導率迅速下降,從而導致濾波器中的電感值下降,嚴重影響濾波效果。 因此要根據工作溫度來正確選擇電源濾波器的額定電流,或者改善濾波器的散熱條件(工作環境)來確保濾波器的安裝使用。
3、插入損耗
?。?) 插入損耗定義 插入損耗是EMI電源濾波器最重要的技術參數之一,設計人員和工程應用人員考慮的中心問題就是:在保證濾波器安全、環境、機械和可靠性能滿足有關標準要求的前提下,實現盡可能高的插入損耗。 濾波器的插入損耗是頻率的函數,用dB(分貝)表示。電路未接濾波器時,信號源在接受電路端電壓(功率)為U( P),接入濾波器后在接受端輸入電壓(功率)為U( P) ,定義插入功耗I.L(InsertionLoss)可以用下列方程推導出來: 假設實際負載阻抗在濾波器插入前后保持不變,故1.1式的各功率可以由其相應的負載電壓和阻抗的表達式來代替: 方程中所表示的插入損耗,需要在任何頻率下通過取下和插入濾波器來進行測量。
(2)共模損耗與差模損耗 EMI電源濾波器的插入損耗包括共模(表示為CM)插入損耗和差模(表示為DM)插入損耗。關于它們的具體測試方法,在CISPR第17號出版物中有過說明,這里就不再說明。例如某個廠家生產的DNF05-H-6AEMI濾波器,按有關標準測得的插入損耗。
(3)影響插入損耗的因素 影響電源EMI濾波器插入損耗的因素包括阻抗搭配和安裝。實際應用中, EMI濾波器輸入和輸出端的阻抗已不是測得圖2.3曲線時的50Ω,所以它對干擾信號的衰減,不會等于產品標準或說明書中的給出的插入損耗。如果選用EMI濾波器的網絡結構和參數合理,加上安裝得當,則有可能實現優于標準中的規定的插入損耗。反之,如果網絡搭配和參數的選擇不當,安裝又有問題,則有可能得不到好的應用效果,反而會得到相反的效果,如圖2.5出現插入損耗增益。
另外一個影響因素,就是濾波器的工作溫度和額定工作電流。EMI濾波器的插入損耗測量標準,CISPR第17號出版物,MIL-STD-220A和GB7343-87所規定的測量方法中,都一致強調了要在加載額定電流條件下進行它的插入損耗的測量。前文已介紹,這是因為濾波器中的電感L用了鐵氧體或其他磁性材料,大電流工作下,磁性飽和狀態引起性能變壞。如圖2.6是某有問題的EMI濾波器測試情況,曲線①是正常50Ω系統下測試的插入損耗曲線,曲線②是50Ω系統和30A額定電流下測試的插入損耗曲線,兩者比較差別相當大。
4、阻抗搭配
(1)阻抗搭配的原因 選擇濾波器時,首先應選擇適合你所用的濾波電路和插入損耗性能。首先選擇濾波電路的原因是與濾波器要在匹配條件下工作的傳統概念不同,所謂匹配意味濾波器需在保持輸入/輸出信號幅度不變(或某一固定比例)的前提下,將其中部分頻譜做預期的處理或變換,而EMI電源濾波器不同,它是個以工頻為導通對象的低通濾波器,是在不匹配的條件下工作,因為在實際應用中無法實現匹配,如濾波器輸入端阻抗RI--電網源阻抗是隨著用電量的大小變化的,濾波器輸出端的阻抗Rl(負載阻抗)--電源阻抗是隨著電源負載的大小變化的,要想獲得理想的抑制效果,應遵循正確的阻抗搭配。 無論怎樣復雜的電源EMI濾波器,都可以把它的共模和差模濾波網絡抽象出來。
(2)阻抗失配分析 可以分析出,一般在EMI電源濾波器電路網絡中,電感L看作高阻元件,電容C看作低阻元件。為了達到濾波更好的效果,按照濾波器的不匹配原則:如果實際負載為感性高阻,則選擇輸出負載為容性低阻的濾波器;如果實際負載為容性低阻,則選擇輸出負載為感性高阻的濾波器。同樣,對于濾波器的輸入阻抗和電網源阻抗,也應該按照阻抗失配原則來選擇濾波器。
由式1.4可知,Zo與Rl相差越大,ρ就越大,端口產生的反射也就越大。對被控制的干擾信號,當EMI濾波器兩端阻抗都處于失配狀態時,EMI信號會在它的輸入和輸出端口產生很強的反射。這樣一來,濾波器對EMI信號的衰減,等于濾波器的固有插入損耗加上反射損耗。在EMI濾波器的實際使用中,可用阻抗失配來實現對EMI信號更加有效抑制。這就是為什么選用EMI濾波器時,一定要仔細分析其端口阻抗的正確搭配,使產生盡可能大的反射,達到對EMI信號的有效控制的原因。
EMI濾波器對EMI信號的抑制能力不僅取決于濾波器在50Ω系統內測得的插入損耗,還取決于濾波網絡與EMI信號源和負載的正確端接。所以,在選用濾波器時,要特別注意EMI濾波器上標牌內容,看其是否準確標出濾波網絡的參數和網絡結構。顯然,那種既不提供網絡參數,又沒有給出網絡結構的EMI濾波器,給正確端接和優化應用帶來了麻煩。
另外,有的EMI濾波器標牌標明電源和負載端接,這可能是為了某特定電子設備所設置,沒有普遍意義,最多也只能是制造廠商的建議端接方法之一。應用EMI濾波器,要具體分析EMI濾波器的網絡結構和接入電路的等效阻抗,按照以上阻抗搭配原則進行端接才能正確達到預期目的。
電源濾波器選型注意事項
1、如果未經過對儀器的EMI、EMS指標測試就選定了濾波器,基本上屬于“盲人騎瞎馬、夜半臨深池”的主兒;
2、如果機器上選擇的是一個市面上買來的通用濾波器,這個濾波器基本上是可以不加的;
3、濾波器8分定制、2分通用才算比較靠譜。
下此結論的原因是因為最近遇到的好幾起事情,都加了濾波器,但傳導就是不過,最后還是根據測試結果給設計了個濾波器樣品,一裝上ok才算pass,其實設計本身也并不復雜,不過多加了一級差模電容和差模電感、或調整了一下濾波器電感電容的參數而已。通用型的IEC插座濾波器,里面的空間很小,一般只能放得下2個共模電容、一個差模電容和一個共模電感,靠這點東西就能放之四海而皆準,難度莫大焉。
評論
查看更多