C語言是一門通用計算機編程語言,應用廣泛。C語言的設計目標是提供一種能以簡易的方式編譯、處理低級存儲器、產生少量的機器碼以及不需要任何運行環境支持便能運行的編程語言。
盡管C語言提供了許多低級處理的功能,但仍然保持著良好跨平臺的特性,以一個標準規格寫出的C語言程序可在許多電腦平臺上進行編譯,甚至包含一些嵌入式處理器(單片機或稱MCU)以及超級電腦等作業平臺。
二十世紀八十年代,為了避免各開發廠商用的C語言語法產生差異,由美國國家標準局為C語言訂定了一套完整的國際標準語法,稱為ANSI C,作為C語言最初的標準。
結構體(struct)是由一系列具有相同類型或不同類型的數據構成的數據集合,叫做結構。
在C語言中,結構體(struct)指的是一種數據結構,是C語言中聚合數據類型(aggregate data type)的一類。結構體可以被聲明為變量、指針或數組等,用以實現較復雜的數據結構。結構體同時也是一些元素的集合,這些元素稱為結構體的成員(member),且這些成員可以為不同的類型,成員一般用名字訪問。
c語言結構體使用
基本定義:結構體,通俗講就像是打包封裝,把一些有共同特征(比如同屬于某一類事物的屬性,往往是某種業務相關屬性的聚合)的變量封裝在內部,通過一定方法訪問修改內部變量。
結構體定義:
第一種:只有結構體定義
[cpp] view plain copystruct stuff{
char job[20];
int age;
float height;
};
第二種:附加該結構體類型的“結構體變量”的初始化的結構體定義
[cpp] view plain copy//直接帶變量名Huqinwei
struct stuff{
char job[20];
int age;
float height;
}Huqinwei;
也許初期看不習慣容易困惑,其實這就相當于:
[cpp] view plain copystruct stuff{
char job[20];
int age;
float height;
};
struct stuff Huqinwei;
第三種:如果該結構體你只用一個變量Huqinwei,而不再需要用
[cpp] view plain copystruct stuff yourname;
去定義第二個變量。
那么,附加變量初始化的結構體定義還可進一步簡化出第三種:
[cpp] view plain copystruct{
char job[20];
int age;
float height;
}Huqinwei;
把結構體名稱去掉,這樣更簡潔,不過也不能定義其他同結構體變量了——至少我現在沒掌握這種方法。
結構體變量及其內部成員變量的定義及訪問:
繞口吧?要分清結構體變量和結構體內部成員變量的概念。
就像剛才的第二種提到的,結構體變量的聲明可以用:
[cpp] view plain copystruct stuff yourname;
其成員變量的定義可以隨聲明進行:
[cpp] view plain copystruct stuff Huqinwei = {“manager”,30,185};
也可以考慮結構體之間的賦值:
[cpp] view plain copy struct stuff faker = Huqinwei;
//或 struct stuff faker2;
// faker2 = faker;
打印,可見結構體的每一個成員變量一模一樣
如果不使用上邊兩種方法,那么成員數組的操作會稍微麻煩(用for循環可能好點)
[cpp] view plain copyHuqinwei.job[0] = ‘M’;
Huqinwei.job[1] = ‘a’;
Huqinwei.age = 27;
nbsp;Huqinwei.height = 185;
結構體成員變量的訪問除了可以借助符號“。”,還可以用“-》”訪問(下邊會提)。
引用(C++)、指針和數組:
首先是引用和指針:
[cpp] view plain copyint main()
{
struct stuff Huqinwei;
struct stuff &ref = Huqinwei;
ref.age = 100;
printf(“Huqinwei.age is %d\n”,Huqinwei.age);
printf(“ref.age is %d\n”,ref.age);
struct stuff *ptr = &Huqinwei;
ptr-》age = 200;
printf(“Huqinwei.age is %d\n”,Huqinwei.age);
printf(“ptr-》age is %d\n”,Huqinwei.age);
//既然都寫了,把指針引用也加上吧
struct stuff *&refToPtr = ptr;
refToPtr-》age = 300;
printf(“Huqinwei.age is %d\n”,Huqinwei.age);
printf(“refToPtr-》age is %d\n”,refToPtr-》age);
}
更正:之前給引用的初始化語句寫錯了,而且沒注明引用是純C中沒有的東西(在這么個以C為幌子的博客中)。
引用是C++特有的一個機制,必須靠編譯器支撐,至于引用轉換到C中本質是什么,我有個帖子寫過
結構體也不能免俗,必須有數組:
[cpp] view plain copystruct test{
int a[3];
int b;
};
//對于數組和變量同時存在的情況,有如下定義方法:
struct test student[3] = {{{66,77,55},0},
{{44,65,33},0},
{{46,99,77},0}};
//特別的,可以簡化成:
struct test student[3] = {{66,77,55,0},
{44,65,33,0},
{46,99,77,0}};
變長結構體
可以變長的數組
[cpp] view plain copy#include 《stdio.h》
#include 《malloc.h》
#include 《string.h》
typedef struct changeable{
int iCnt;
char pc[0];
}schangeable;
main(){
printf(“size of struct changeable : %d\n”,sizeof(schangeable));
schangeable *pchangeable = (schangeable *)malloc(sizeof(schangeable) + 10*sizeof(char));
printf(“size of pchangeable : %d\n”,sizeof(pchangeable));
schangeable *pchangeable2 = (schangeable *)malloc(sizeof(schangeable) + 20*sizeof(char));
pchangeable2-》iCnt = 20;
printf(“pchangeable2-》iCnt : %d\n”,pchangeable2-》iCnt);
strncpy(pchangeable2-》pc,“hello world”,11);
printf(“%s\n”,pchangeable2-》pc);
printf(“size of pchangeable2 : %d\n”,sizeof(pchangeable2));
}
運行結果
[cpp] view plain copysize of struct changeable : 4
size of pchangeable : 4
pchangeable2-》iCnt : 20
hello world
size of pchangeable2 : 4
結構體本身長度就是一個int長度(這個int值通常只為了表示后邊的數組長度),后邊的數組長度不計算在內,但是該數組可以直接使用。
(說后邊是個指針吧?指針也占長度!這個是不占的!原理很簡單,這個東西完全是數組后邊的尾巴,malloc開辟的是一片連續空間。其實這不應該算一個機制,感覺應該更像一個技巧吧)
20160405補充:
非彈性數組不能用“char a[]”這種形式定義彈性(flexible)變量,必須明確大小。
彈性數組在結構體中,下面的形式是唯一允許的:
[cpp] view plain copystruct s
{
int a;
char b[] ;
};
順序顛倒會讓b和a數據重合,會在編譯時不通過。
char b[] = “hell”;也不行(C和C++都不行)
少了整型變量a又會讓整個結構體長度為0,compiler不允許編譯通過!不同的是,其實C++形式上是允許空結構體的,本質上是通過機制避免了純空結構體和類對象,自動給空結構體對象分配一個字節(sizeof()返回1)方便區分對象,避免地址重合!所以呢,C如果有空結構體,定義兩個(或一打,或干脆一個數組)該結構體的變量(對象),地址是完全一樣的!·!!!!!!!!調試看程序運行,這些語句其實都被當屁放了,根本沒有運行,沒有實際意義,C壓根不支持空結構體這種東西(或者說我也沒想好什么場合有用)
[cpp] view plain copystruct s2
{
// char a[] = “hasd” ;
// int c;
};
int main()
{
struct s2 s22;
struct s2 s23;
struct s2 s24;
struct s2 s25;
}
例外的是,C++唯獨不給帶彈性數組的結構體分配空間(可能怕和變長結構體機制產生某種沖突,比如大小怎么算):
[cpp] view plain copystruct s
{
char b[] ;
};
[cpp] view plain copystruct s
{
// char b[] ;
};
C++中兩者是不一樣的,空的結構體反而“大”(sizeof()返回1)
20160321補充:這個機制利用了一個非常重要的特性——數組和指針的區別!數組和指針在很多操作上是一樣的,但是本質不一樣。最直觀的,指針可以改指向,數組不可以,因為數組占用的每一個內存地址都用來保存變量或者對象,而指針占用的內存地址保存的是一個地址,數組沒有單獨的保存指向地址的這樣一個結構。數組的位置是固定的,正如指針變量自身的位置也是固定的,改的是指針的值,是指向的目標地址,而因為數組不存儲目標地址,所以改不了指向。企圖把地址強制賦值給數組的話,也只是說把指針賦值給數組,類型不兼容。
結構體嵌套:
結構體嵌套其實沒有太意外的東西,只要遵循一定規律即可:
[cpp] view plain copy//對于“一錘子買賣”,只對最終的結構體變量感興趣,其中A、B也可刪,不過最好帶著
struct A{
struct B{
int c;
}
b;
}
a;
//使用如下方式訪問:
a.b.c = 10;
特別的,可以一邊定義結構體B,一邊就使用上:
[cpp] view plain copystruct A{
struct B{
int c;
}b;
struct B sb;
}a;
使用方法與測試:
[cpp] view plain copy a.b.c = 11;
printf(“%d\n”,a.b.c);
a.sb.c = 22;
printf(“%d\n”,a.sb.c);
結果無誤。
但是如果嵌套的結構體B是在A內部才聲明的,并且沒定義一個對應的對象實體b,這個結構體B的大小還是不算進結構體A中。
結構體與函數:
關于傳參,首先:
[cpp] view plain copyvoid func(int);
func(a.b.c);
把結構體中的int成員變量當做和普通int變量一樣的東西來使用,是不用腦子就想到的一種方法。
另外兩種就是傳遞副本和指針了 :
[cpp] view plain copy//struct A定義同上
//設立了兩個函數,分別傳遞struct A結構體和其指針。
void func1(struct A a){
printf(“%d\n”,a.b.c);
}
void func2(struct A* a){
printf(“%d\n”,a-》b.c);
}
main(){
a.b.c = 112;
struct A * pa;
pa = &a;
func1(a);
func2(&a);
func2(pa);
}
占用內存空間:
struct結構體,在結構體定義的時候不能申請內存空間,不過如果是結構體變量,聲明的時候就可以分配——兩者關系就像C++的類與對象,對象才分配內存(不過嚴格講,作為代碼段,結構體定義部分“.text”真的就不占空間了么?當然,這是另外一個范疇的話題)。
結構體的大小通常(只是通常)是結構體所含變量大小的總和,下面打印輸出上述結構體的size:
[cpp] view plain copy printf(“size of struct man:%d\n”,sizeof(struct man));
printf(“size:%d\n”,sizeof(Huqinwei));
結果毫無懸念,都是28:分別是char數組20,int變量4,浮點變量4.
下邊說說不通常:
對于結構體中比較小的成員,可能會被強行對齊,造成空間的空置,這和讀取內存的機制有關,為了效率。通常32位機按4字節對齊,小于的都當4字節,有連續小于4字節的,可以不著急對齊,等到湊夠了整,加上下一個元素超出一個對齊位置,才開始調整,比如3+2或者1+4,后者都需要另起(下邊的結構體大小是8bytes),相關例子就多了,不贅述。
[cpp] view plain copystruct s
{
char a;
short b;
int c;
}
相應的,64位機按8字節對齊。不過對齊不是絕對的,用#pragma pack()可以修改對齊,如果改成1,結構體大小就是實實在在的成員變量大小的總和了。
和C++的類不一樣,結構體不可以給結構體內部變量初始化,。
如下,為錯誤示范:
[cpp] view plain copy#include《stdio.h》
//直接帶變量名Huqinwei
struct stuff{
// char job[20] = “Programmer”;
// char job[];
// int age = 27;
// float height = 185;
}Huqinwei;
PS:結構體的聲明也要注意位置的,作用域不一樣。
C++的結構體變量的聲明定義和C有略微不同,說白了就是更“面向對象”風格化,要求更低。
評論
查看更多