MCU是Microcontroller Unit 的簡稱,中文叫微控制器,俗稱單片機,是把CPU的頻率與規(guī)格做適當縮減,并將內(nèi)存、計數(shù)器、USB、A/D轉(zhuǎn)換、UART、PLC、DMA等周邊接口,甚至LCD驅(qū)動電路都整合在單一芯片上,形成芯片級的計算機,為不同的應用場合做不同組合控制,諸如手機、PC外圍、遙控器,至汽車電子、工業(yè)上的步進馬達、機器手臂的控制等,都可見到MCU的身影。
單片機發(fā)展簡史
單片機出現(xiàn)的歷史并不長,但發(fā)展十分迅猛。它的產(chǎn)生與發(fā)展和微處理器(CPU)的產(chǎn)生與發(fā)展大體同步,自1971年美國英特爾公司首先推出4位微處理器以來,它的發(fā)展到目前為止大致可分為5個階段。下面以英特爾公司的單片機發(fā)展為代表加以介紹。
1971年~1976年單片機發(fā)展的初級階段。1971年11月英特爾公司首先設計出集成度為2000只晶體管/片的4位微處理器英特爾4004,并配有RAM、 ROM和移位寄存器, 構(gòu)成了第一臺MCS—4微處理器, 而后又推出了8位微處理器英特爾8008, 以及其它各公司相繼推出的8位微處理器。
1976年~1980年低性能單片機階段。以1976年英特爾公司推出的MCS—48系列為代表, 采用將8位CPU、 8位并行I/O接口、8位定時/計數(shù)器、RAM和ROM等集成于一塊半導體芯片上的單片結(jié)構(gòu), 雖然其尋址范圍有限(不大于4 KB), 也沒有串行I/O, RAM、 ROM容量小, 中斷系統(tǒng)也較簡單, 但功能可滿足一般工業(yè)控制和智能化儀器、儀表等的需要。
1980年~1983年高性能單片機階段。這一階段推出的高性能8位單片機普遍帶有串行口,有多級中斷處理系統(tǒng), 多個16位定時器/計數(shù)器。片內(nèi)RAM、 ROM的容量加大,且尋址范圍可達64 KB,個別片內(nèi)還帶有A/D轉(zhuǎn)換接口。
1983年~80年代末16位單片機階段。1983年英特爾公司又推出了高性能的16位單片機MCS-96系列,由于其采用了最新的制造工藝, 使芯片集成度高達12萬只晶體管/片。
1990年代單片機在集成度、功能、速度、可靠性、應用領域等全方位向更高水平發(fā)展。
單片機的分類和應用
MCU按其存儲器類型可分為無片內(nèi)ROM型和帶片內(nèi)ROM型兩種。對于無片內(nèi)ROM型的芯片,必須外接EPROM才能應用(典型為8031);帶片內(nèi)ROM型的芯片又分為片內(nèi)EPROM型(典型芯片為87C51)、MASK片內(nèi)掩模ROM型(典型芯片為8051)、片內(nèi)Flash型(典型芯片為89C51)等類型。
按用途可分為通用型和專用型;根據(jù)數(shù)據(jù)總線的寬度和一次可處理的數(shù)據(jù)字節(jié)長度可分為8、16、32位MCU。
目前,國內(nèi)MCU應用市場最廣泛的是消費電子領域,其次是工業(yè)領域、和汽車電子市場。消費電子包括家用電器、電視、游戲機和音視頻系統(tǒng)等。工業(yè)領域包括智能家居、自動化、醫(yī)療應用及新能源生成與分配等。汽車領域包括汽車動力總成和安全控制系統(tǒng)等。
單片機的基本功能
對于絕大多數(shù)MCU,下列功能是最普遍也是最基本的,針對不同的MCU,其描述的方式可能會有區(qū)別,但本質(zhì)上是基本相同的:
1、TImer(定時器):TImer的種類雖然比較多,但可歸納為兩大類:一類是固定時間間隔的TImer,即其定時的時間是由系統(tǒng)設定的,用戶程序不可控制,系統(tǒng)只提供幾種固定的時間間隔給用戶程序進行選擇,如32Hz,16Hz,8Hz等,此類TImer在4位MCU中比較常見,因此可以用來實現(xiàn)時鐘、計時等相關的功能。
另一類則是Programmable Timer(可編程定時器),顧名思義,該類Timer的定時時間是可以由用戶的程序來控制的,控制的方式包括:時鐘源的選擇、分頻數(shù)(Prescale)選擇及預制數(shù)的設定等,有的MCU三者都同時具備,而有的則可能是其中的一種或兩種。此類Timer應用非常靈活,實際的使用也千變?nèi)f化,其中最常見的一種應用就是用其實現(xiàn)PWM輸出。
由于時鐘源可以自由選擇,因此,此類Timer一般均與Event Counter(事件計數(shù)器)合在一起。
2、IO口:任何MCU都具有一定數(shù)量的IO口,沒有IO口,MCU就失去了與外部溝通的渠道。根據(jù)IO口的可配置情況,可以分為如下幾種類型:
純輸入或純輸出口:此類IO口由MCU硬件設計決定,只能是輸入或輸出,不可用軟件來進行實時的設定。
直接讀寫IO口:如MCS-51的IO口就屬于此類IO口。當執(zhí)行讀IO口指令時,就是輸入口;當執(zhí)行寫IO口指令則自動為輸出口。
程序編程設定輸入輸出方向的:此類IO口的輸入或輸出由程序根據(jù)實際的需要來進行設定,應用比較靈活,可以實現(xiàn)一些總線級的應用,如I2C總線,各種LCD、LED Driver的控制總線等。
對于IO口的使用,重要的一點必須牢記的是:對于輸入口,必須有明確的電平信號,確保不能浮空(可以通過增加上拉或下拉電阻來實現(xiàn));而對于輸出口,其輸出的狀態(tài)電平必須考慮其外部的連接情況,應保證在Standby或靜態(tài)狀態(tài)下不存在拉電流或灌電流。
3、外部中斷:外部中斷也是絕大多數(shù)MCU所具有的基本功能,一般用于信號的實時觸發(fā),數(shù)據(jù)采樣和狀態(tài)的檢測,中斷的方式由上升沿、下降沿觸發(fā)和電平觸發(fā)幾種。外部中斷一般通過輸入口來實現(xiàn),若為IO口,則只有設為輸入時其中斷功能才會開啟;若為輸出口,則外部中斷功能將自動關閉(ATMEL的ATiny系列存在一些例外,輸出口時也能觸發(fā)中斷功能)。外部中斷的應用如下:
外部觸發(fā)信號的檢測:一種是基于實時性的要求,比如可控硅的控制,突發(fā)性信號的檢測等,而另一種情況則是省電的需要。
信號頻率的測量:為了保證信號不被遺漏,外部中斷是最理想的選擇。
數(shù)據(jù)的解碼:在遙控應用領域,為了降低設計的成本,經(jīng)常需要采用軟件的方式來對各種編碼數(shù)據(jù)進行解碼,如Manchester和PWM編碼的解碼。
按鍵的檢測和系統(tǒng)的喚醒:對于進入Sleep狀態(tài)的MCU,一般需要通過外部中斷來進行喚醒,最基本的形式則是按鍵,通過按鍵的動作來產(chǎn)生電平的變化。
4、通訊接口:MCU所提供的通訊接口一般包括SPI接口,UART,I2C接口等,其分別描述如下:
SPI接口:此類接口是絕大多數(shù)MCU都提供的一種最基本通訊方式,其數(shù)據(jù)傳輸采用同步時鐘來控制,信號包括:SDI(串行數(shù)據(jù)輸入)、SDO(串行數(shù)據(jù)輸出)、SCLK(串行時鐘)及Ready信號;有些情況下則可能沒有Ready信號;此類接口可以工作在Master方式或Slave方式下,通俗說法就是看誰提供時鐘信號,提供時鐘的一方為Master,相反的一方則為Slaver。
UART(Universal Asynchronous Receive Transmit):屬于最基本的一種異步傳輸接口,其信號線只有Rx和Tx兩條,基本的數(shù)據(jù)格式為:Start Bit + Data Bit(7-bits/8-bits) + Parity Bit(Even, Odd or None) + Stop Bit(1~2Bit)。一位數(shù)據(jù)所占的時間稱為Baud Rate(波特率)。
對于大多數(shù)的MCU來講,數(shù)據(jù)位的長度、數(shù)據(jù)校驗方式(奇校驗、偶校驗或無校驗)、停止位(Stop Bit)的長度及Baud Rate是可以通過程序編程進行靈活設定。此類接口最常用的方式就是與PC機的串口進行數(shù)據(jù)通訊。
I2C接口:I2C是由Philips開發(fā)的一種數(shù)據(jù)傳輸協(xié)議,同樣采用2根信號來實現(xiàn):SDAT(串行數(shù)據(jù)輸入輸出)和SCLK(串行時鐘)。其最大的好處是可以在此總線上掛接多個設備,通過地址來進行識別和訪問;I2C總線的一個最大的好處就是非常方便用軟件通過IO口來實現(xiàn),其傳輸?shù)臄?shù)據(jù)速率完全由SCLK來控制,可快可慢,不像UART接口,有嚴格的速率要求。
5、Watchdog(看門狗定時器):Watchdog也是絕大多數(shù)MCU的一種基本配置(一些4位MCU可能沒有此功能),大多數(shù)的MCU的Watchdog只能允許程序?qū)ζ溥M行復位而不能對其關閉(有的是在程序燒入時來設定的,如Microchip PIC系列MCU),而有的MCU則是通過特定的方式來決定其是否打開,如Samsung的KS57系列,只要程序訪問了Watchdog寄存器,就自動開啟且不能再被關閉。一般而言watchdog的復位時間是可以程序來設定的。Watchdog的最基本的應用是為MCU因為意外的故障而導致死機提供了一種自我恢復的能力。
編輯:黃飛
?
評論
查看更多