中斷服務程序
中斷是嵌入式系統中重要的組成部分,但是在標準C中不包含中斷。許多編譯開發商在標準C上增加了對中斷的支持,提供新的關鍵字用于標示中斷服務程序(ISR),類似于__interrupt、#program interrupt等。當一個函數被定義為ISR的時候,編譯器會自動為該函數增加中斷服務程序所需要的中斷現場入棧和出棧代碼。
中斷服務程序需要滿足如下要求:
(1)不能返回值;
?。?)不能向ISR傳遞參數;
?。?) ISR應該盡可能的短小精悍;
(4) printf(char * lpFormatString,…)函數會帶來重入和性能問題,不能在ISR中采用。
在某項目的開發中,我們設計了一個隊列,在中斷服務程序中,只是將中斷類型添加入該隊列中,在主程序的死循環中不斷掃描中斷隊列是否有中斷,有則取出隊列中的第一個中斷類型,進行相應處理。
/* 存放中斷的隊列 */
typedef struct tagIntQueue
{
int intType; /* 中斷類型 */
struct tagIntQueue *next;
}IntQueue;
IntQueue lpIntQueueHead;
__interrupt ISRexample ()
{
int intType;
intType = GetSystemType();
QueueAddTail(lpIntQueueHead, intType);/* 在隊列尾加入新的中斷 */
}
在主程序循環中判斷是否有中斷:
While(1)
{
If( !IsIntQueueEmpty() )
{
intType = GetFirstInt();
switch(intType) /* 是不是很象WIN32程序的消息解析函數? */
{
/* 對,我們的中斷類型解析很類似于消息驅動 */
case xxx: /* 我們稱其為“中斷驅動”吧? */
…
break;
case xxx:
…
break;
…
}
}
}
按上述方法設計的中斷服務程序很小,實際的工作都交由主程序執行了。
模塊劃分的“劃”是規劃的意思,意指怎樣合理的將一個很大的軟件劃分為一系列功能獨立的部分合作完成系統的需求
硬件驅動模塊
一個硬件驅動模塊通常應包括如下函數:
?。?)中斷服務程序ISR
?。?)硬件初始化
a.修改寄存器,設置硬件參數(如UART應設置其波特率,AD/DA設備應設置其采樣速率等);
b.將中斷服務程序入口地址寫入中斷向量表:
/* 設置中斷向量表 */
m_myPtr = make_far_pointer(0l); /* 返回void far型指針void far * */
m_myPtr += ITYPE_UART; /* ITYPE_UART: uart中斷服務程序 */
/* 相對于中斷向量表首地址的偏移 */
*m_myPtr = &UART _Isr; /* UART _Isr:UART的中斷服務程序 */
(3)設置CPU針對該硬件的控制線
a.如果控制線可作PIO(可編程I/O)和控制信號用,則設置CPU內部對應寄存器使其作為控制信號;
b.設置CPU內部的針對該設備的中斷屏蔽位,設置中斷方式(電平觸發還是邊緣觸發)。
?。?)提供一系列針對該設備的操作接口函數。例如,對于LCD,其驅動模塊應提供繪制像素、畫線、繪制矩陣、顯示字符點陣等函數;而對于實時鐘,其驅動模塊則需提供獲取時間、設置時間等函數。
C的面向對象化
在面向對象的語言里面,出現了類的概念。類是對特定數據的特定操作的集合體。類包含了兩個范疇:數據和操作。而C語言中的struct僅僅是數據的集合,我們可以利用函數指針將struct模擬為一個包含數據和操作的“類”。下面的C程序模擬了一個最簡單的“類”:
#ifndef C_Class
#define C_Class struct
#endif
C_Class A
{
C_Class A *A_this; /* this指針 */
void (*Foo)(C_Class A *A_this); /* 行為:函數指針 */
int a; /* 數據 */
int b;
};
我們可以利用C語言模擬出面向對象的三個特性:封裝、繼承和多態,但是更多的時候,我們只是需要將數據與行為封裝以解決軟件結構混亂的問題。C模擬面向對象思想的目的不在于模擬行為本身,而在于解決某些情況下使用C語言編程時程序整體框架結構分散、數據和函數脫節的問題。我們在后續章節會看到這樣的例子。
總結
本篇介紹了嵌入式系統編程軟件架構方面的知識,主要包括模塊劃分、多任務還是單任務選取、單任務程序典型架構、中斷服務程序、硬件驅動模塊設計等,從宏觀上給出了一個嵌入式系統軟件所包含的主要元素。
請記?。很浖Y構是軟件的靈魂!結構混亂的程序面目可憎,調試、測試、維護、升級都極度困難。
C語言嵌入式系統編程注意事項之內存操作
在嵌入式系統的編程中,常常要求在特定的內存單元讀寫內容,匯編有對應的MOV指令,而除C/C++以外的其它編程語言基本沒有直接訪問絕對地址的能力
數據指針
在嵌入式系統的編程中,常常要求在特定的內存單元讀寫內容,匯編有對應的MOV指令,而除C/C++以外的其它編程語言基本沒有直接訪問絕對地址的能力。在嵌入式系統的實際調試中,多借助C語言指針所具有的對絕對地址單元內容的讀寫能力。以指針直接操作內存多發生在如下幾種情況:
?。?) 某I/O芯片被定位在CPU的存儲空間而非I/O空間,而且寄存器對應于某特定地址;
?。?) 兩個CPU之間以雙端口RAM通信,CPU需要在雙端口RAM的特定單元(稱為mail box)書寫內容以在對方CPU產生中斷;
?。?) 讀取在ROM或FLASH的特定單元所燒錄的漢字和英文字模。
譬如:
unsigned char *p = (unsigned char *)0xF000FF00;
*p=11;
以上程序的意義為在絕對地址0xF0000+0xFF00(80186使用16位段地址和16位偏移地址)寫入11。
在使用絕對地址指針時,要注意指針自增自減操作的結果取決于指針指向的數據類別。上例中p++后的結果是p= 0xF000FF01,若p指向int,即:
int *p = (int *)0xF000FF00;
p++(或++p)的結果等同于:p = p+sizeof(int),而p-(或-p)的結果是p = p-sizeof(int)。
同理,若執行:
long int *p = (long int *)0xF000FF00;
則p++(或++p)的結果等同于:p = p+sizeof(long int) ,而p-(或-p)的結果是p = p-sizeof(long int)。
記?。篊PU以字節為單位編址,而C語言指針以指向的數據類型長度作自增和自減。理解這一點對于以指針直接操作內存是相當重要的。
函數指針
首先要理解以下三個問題:
?。?)C語言中函數名直接對應于函數生成的指令代碼在內存中的地址,因此函數名可以直接賦給指向函數的指針;
(2)調用函數實際上等同于“調轉指令+參數傳遞處理+回歸位置入?!保举|上最核心的操作是將函數生成的目標代碼的首地址賦給CPU的PC寄存器;
?。?)因為函數調用的本質是跳轉到某一個地址單元的code去執行,所以可以“調用”一個根本就不存在的函數實體,暈?請往下看:
請拿出你可以獲得的任何一本大學《微型計算機原理》教材,書中講到,186 CPU啟動后跳轉至絕對地址0xFFFF0(對應C語言指針是0xF000FFF0,0xF000為段地址,0xFFF0為段內偏移)執行,請看下面的代碼:
typedef void (*lp) ( ); /* 定義一個無參數、無返回類型的 */
/* 函數指針類型 */
lp lpReset = (lp)0xF000FFF0; /* 定義一個函數指針,指向*/
/* CPU啟動后所執行第一條指令的位置 */
lpReset(); /* 調用函數 */
在以上的程序中,我們根本沒有看到任何一個函數實體,但是我們卻執行了這樣的函數調用:lpReset(),它實際上起到了“軟重啟”的作用,跳轉到CPU啟動后第一條要執行的指令的位置。
記?。汉瘮禑o它,唯指令集合耳;你可以調用一個沒有函數體的函數,本質上只是換一個地址開始執行指令!
評論
查看更多