小波變換與傅里葉變換有什么區(qū)別嗎?小波變換與傅里葉變換哪個(gè)好?我們通過小波變換與傅里葉變換的詳細(xì)解讀、小波變換與傅里葉變換的區(qū)別、傅里葉變換缺點(diǎn)方面來解析。
小波變換與傅里葉變換的區(qū)別
傅立葉分析中,以單個(gè)變量(時(shí)間或頻率)的函數(shù)表示信號(hào),因此,不能同時(shí)作時(shí)域頻域分析。
小波分析中,利用聯(lián)合時(shí)間一尺度函數(shù)分析信號(hào),通過平移和伸縮構(gòu)造小波基,由于小波同時(shí)具有時(shí)間平移和多尺度分辨率的特點(diǎn),可以同時(shí)進(jìn)行時(shí)頻域分析。
傅里葉變換的不足
如上圖,最上邊的是頻率始終不變的平穩(wěn)信號(hào)。而下邊兩個(gè)則是頻率隨著時(shí)間改變的非平穩(wěn)信號(hào),它們同樣包含和最上信號(hào)相同頻率的四個(gè)成分。做FFT后,我們發(fā)現(xiàn)這三個(gè)時(shí)域上有巨大差異的信號(hào),頻譜(幅值譜)卻非常一致。尤其是下邊兩個(gè)非平穩(wěn)信號(hào),我們從頻譜上無法區(qū)分它們,因?yàn)樗鼈儼乃膫€(gè)頻率的信號(hào)的成分確實(shí)是一樣的,只是出現(xiàn)的先后順序不同。
可見,傅里葉變換處理非平穩(wěn)信有天生缺陷。它只能獲取一段信總體上包含哪些頻率的成分,但是對(duì)各成分出現(xiàn)的時(shí)刻并無所知。因此時(shí)域相差很大的兩個(gè)信 號(hào),可能頻譜圖一樣。
小波變換與傅里葉變換詳解
從傅里葉變換到小波變換,并不是一個(gè)完全抽象的東西,可以講得很形象。小波變換有著明確的物理意義,如果我們從它的提出時(shí)所面對(duì)的問題看起,可以整理出非常清晰的思路。
下面就按照傅里葉--》短時(shí)傅里葉變換--》小波變換的順序,講一下為什么會(huì)出現(xiàn)小波這個(gè)東西、小波究竟是怎樣的思路。
一、傅里葉變換
關(guān)于傅里葉變換的基本概念在此我就不再贅述了,默認(rèn)大家現(xiàn)在正處在理解了傅里葉但還沒理解小波的道路上。
下面我們主要將傅里葉變換的不足。即我們知道傅里葉變化可以分析信號(hào)的頻譜,那么為什么還要提出小波變換?答案“對(duì)非平穩(wěn)過程,傅里葉變換有局限性”。看如下一個(gè)簡單的信號(hào):
做完FFT(快速傅里葉變換)后,可以在頻譜上看到清晰的四條線,信號(hào)包含四個(gè)頻率成分。
一切沒有問題。但是,如果是頻率隨著時(shí)間變化的非平穩(wěn)信號(hào)呢?
如上圖,最上邊的是頻率始終不變的平穩(wěn)信號(hào)。而下邊兩個(gè)則是頻率隨著時(shí)間改變的非平穩(wěn)信號(hào),它們同樣包含和最上信號(hào)相同頻率的四個(gè)成分。做FFT后,我們發(fā)現(xiàn)這三個(gè)時(shí)域上有巨大差異的信號(hào),頻譜(幅值譜)卻非常一致。尤其是下邊兩個(gè)非平穩(wěn)信號(hào),我們從頻譜上無法區(qū)分它們,因?yàn)樗鼈儼乃膫€(gè)頻率的信號(hào)的成分確實(shí)是一樣的,只是出現(xiàn)的先后順序不同。
可見,傅里葉變換處理非平穩(wěn)信號(hào)有天生缺陷。它只能獲取一段信號(hào)總體上包含哪些頻率的成分,但是對(duì)各成分出現(xiàn)的時(shí)刻并無所知。因此時(shí)域相差很大的兩個(gè)信號(hào),可能頻譜圖一樣。
然而平穩(wěn)信號(hào)大多是人為制造出來的,自然界的大量信號(hào)幾乎都是非平穩(wěn)的,所以在比如生物醫(yī)學(xué)信號(hào)分析等領(lǐng)域的論文中,基本看不到單純傅里葉變換這樣naive的方法。
上圖所示的是一個(gè)正常人的事件相關(guān)電位。對(duì)于這樣的非平穩(wěn)信號(hào),只知道包含哪些頻率成分是不夠的,我們還想知道各個(gè)成分出現(xiàn)的時(shí)間。知道信號(hào)頻率隨時(shí)間變化的情況,各個(gè)時(shí)刻的瞬時(shí)頻率及其幅值——這也就是時(shí)頻分析。
二、短時(shí)傅里葉變換(Short-time Fourier Transform,STFT)
一個(gè)簡單可行的方法就是——加窗。 “把整個(gè)時(shí)域過程分解成無數(shù)個(gè)等長的小過程,每個(gè)小過程近似平穩(wěn),再傅里葉變換,就知道在哪個(gè)時(shí)間點(diǎn)上出現(xiàn)了什么頻率了。”這就是短時(shí)傅里葉變換。
看圖:
時(shí)域上分成一段一段做FFT,不就知道頻率成分隨著時(shí)間的變化情況了嗎!
用這樣的方法,可以得到一個(gè)信號(hào)的時(shí)頻圖了:
圖上既能看到10Hz, 25 Hz, 50 Hz, 100 Hz四個(gè)頻域成分,還能看到出現(xiàn)的時(shí)間。兩排峰是對(duì)稱的,所以大家只用看一排就行了。
是不是棒棒的?時(shí)頻分析結(jié)果到手。但是STFT依然有缺陷。
使用STFT存在一個(gè)問題,我們應(yīng)該用多寬的窗函數(shù)?
窗太寬太窄都有問題:
窗太窄,窗內(nèi)的信號(hào)太短,會(huì)導(dǎo)致頻率分析不夠精準(zhǔn),頻率分辨率差。窗太寬,時(shí)域上又不夠精細(xì),時(shí)間分辨率低。
(這里插一句,這個(gè)道理可以用海森堡不確定性原理來解釋。類似于我們不能同時(shí)獲取一個(gè)粒子的動(dòng)量和位置,我們也不能同時(shí)獲取信號(hào)絕對(duì)精準(zhǔn)的時(shí)刻和頻率。這也是一對(duì)不可兼得的矛盾體。我們不知道在某個(gè)瞬間哪個(gè)頻率分量存在,我們知道的只能是在一個(gè)時(shí)間段內(nèi)某個(gè)頻帶的分量存在。所以絕對(duì)意義的瞬時(shí)頻率是不存在的。)
看看實(shí)例效果吧:
上圖對(duì)同一個(gè)信號(hào)(4個(gè)頻率成分)采用不同寬度的窗做STFT,結(jié)果如右圖。用窄窗,時(shí)頻圖在時(shí)間軸上分辨率很高,幾個(gè)峰基本成矩形,而用寬窗則變成了綿延的矮山。但是頻率軸上,窄窗明顯不如下邊兩個(gè)寬窗精確。
所以窄窗口時(shí)間分辨率高、頻率分辨率低,寬窗口時(shí)間分辨率低、頻率分辨率高。對(duì)于時(shí)變的非穩(wěn)態(tài)信號(hào),高頻適合小窗口,低頻適合大窗口。然而STFT的窗口是固定的,在一次STFT中寬度不會(huì)變化,所以STFT還是無法滿足非穩(wěn)態(tài)信號(hào)變化的頻率的需求。
三、小波變換
那么你可能會(huì)想到,讓窗口大小變起來,多做幾次STFT不就可以了嗎?!沒錯(cuò),小波變換就有著這樣的思路。
但事實(shí)上小波并不是這么做的(有人認(rèn)為“小波變換就是根據(jù)算法,加不等長的窗,對(duì)每一小部分進(jìn)行傅里葉變換”,這是不準(zhǔn)確的。小波變換并沒有采用窗的思想,更沒有做傅里葉變換。)
至于為什么不采用可變窗的STFT呢,我認(rèn)為是因?yàn)檫@樣做冗余會(huì)太嚴(yán)重,STFT做不到正交化,這也是它的一大缺陷。
于是小波變換的出發(fā)點(diǎn)和STFT還是不同的。STFT是給信號(hào)加窗,分段做FFT;而小波直接把傅里葉變換的基給換了——將無限長的三角函數(shù)基換成了有限長的會(huì)衰減的小波基。這樣不僅能夠獲取頻率,還可以定位到時(shí)間了~
【解釋】
來我們?cè)倩仡櫼幌赂道锶~變換吧,沒弄清傅里葉變換為什么能得到信號(hào)各個(gè)頻率成分的同學(xué)也可以再借我的圖理解一下。
傅里葉變換把無限長的三角函數(shù)作為基函數(shù):
這個(gè)基函數(shù)會(huì)伸縮、會(huì)平移(其實(shí)是兩個(gè)正交基的分解)。縮得窄,對(duì)應(yīng)高頻;伸得寬,對(duì)應(yīng)低頻。然后這個(gè)基函數(shù)不斷和信號(hào)做相乘。某一個(gè)尺度(寬窄)下乘出來的結(jié)果,就可以理解成信號(hào)所包含的當(dāng)前尺度對(duì)應(yīng)頻率成分有多少。于是,基函數(shù)會(huì)在某些尺度下,與信號(hào)相乘得到一個(gè)很大的值,因?yàn)榇藭r(shí)二者有一種重合關(guān)系。那么我們就知道信號(hào)包含該頻率的成分的多少。
仔細(xì)體會(huì)可以發(fā)現(xiàn),這一步其實(shí)是在計(jì)算信號(hào)和三角函數(shù)的相關(guān)性。
看,這兩種尺度能乘出一個(gè)大的值(相關(guān)度高),所以信號(hào)包含較多的這兩個(gè)頻率成分,在頻譜上這兩個(gè)頻率會(huì)出現(xiàn)兩個(gè)峰。
以上,就是粗淺意義上傅里葉變換的原理。
如前邊所說,小波做的改變就在于,將無限長的三角函數(shù)基換成了有限長的會(huì)衰減的小波基。
這就是為什么它叫“小波”,因?yàn)槭呛苄〉囊粋€(gè)波嘛~
從公式可以看出,不同于傅里葉變換,變量只有頻率ω,小波變換有兩個(gè)變量:尺度a(scale)和平移量 τ(translation)。尺度a控制小波函數(shù)的伸縮,平移量 τ控制小波函數(shù)的平移。尺度就對(duì)應(yīng)于頻率(反比),平移量 τ就對(duì)應(yīng)于時(shí)間。
當(dāng)伸縮、平移到這么一種重合情況時(shí),也會(huì)相乘得到一個(gè)大的值。這時(shí)候和傅里葉變換不同的是,這不僅可以知道信號(hào)有這樣頻率的成分,而且知道它在時(shí)域上存在的具體位置。
而當(dāng)我們?cè)诿總€(gè)尺度下都平移著和信號(hào)乘過一遍后,我們就知道信號(hào)在每個(gè)位置都包含哪些頻率成分。
看到了嗎?有了小波,我們從此再也不害怕非穩(wěn)定信號(hào)啦!從此可以做時(shí)頻分析啦!
做傅里葉變換只能得到一個(gè)頻譜,做小波變換卻可以得到一個(gè)時(shí)頻譜!
↑:時(shí)域信號(hào)
↑:傅里葉變換結(jié)果
↑:小波變換結(jié)果
小波還有一些好處:
1. 我們知道對(duì)于突變信號(hào),傅里葉變換存在吉布斯效應(yīng),我們用無限長的三角函數(shù)怎么也擬合不好突變信號(hào):
然而衰減的小波就不一樣了:
2. 小波可以實(shí)現(xiàn)正交化,短時(shí)傅里葉變換不能。
評(píng)論