在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>EMC/EMI設(shè)計(jì)>什么是串?dāng)_它的形成原理是怎樣的

什么是串?dāng)_它的形成原理是怎樣的

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

評論

查看更多

相關(guān)推薦

中國通信行業(yè)未來發(fā)展趨勢分析

未來中國通信行業(yè)將會(huì)形成怎樣的格局與態(tài)勢?這不僅和4G有關(guān),與寬帶中國戰(zhàn)略有關(guān),與集約化網(wǎng)業(yè)分離以及三網(wǎng)融合有關(guān),更與十八屆三中全會(huì)相關(guān)的政策有關(guān)。
2014-03-10 09:19:342207

iBeacon落地微信能否開啟IOT微網(wǎng)絡(luò)時(shí)代?

在不溫不火的一年多推動(dòng)發(fā)展后,iBeacon借助微信的搖一搖周邊終于在各大媒體火爆起來。作為iBeacon圈資深從業(yè)者,筆者對這一事件非常關(guān)注,和業(yè)內(nèi)同行和合作伙伴聊起,大家有的看好,有的觀望,一時(shí)間大家都在猜測最終iBeacon會(huì)形成怎樣的局面?
2015-03-24 10:05:221698

物聯(lián)網(wǎng)藍(lán)牙、Wifi、ZigBee 能否三分智能家居天下?

物聯(lián)網(wǎng)產(chǎn)業(yè)日益壯大,2015年我國物聯(lián)網(wǎng)市場規(guī)模將突破7500億元,未來5年內(nèi),市場規(guī)模更是有望突破萬億元大關(guān)。那么,作為現(xiàn)在核心技術(shù)的物聯(lián)網(wǎng)主流連接方式藍(lán)牙、Wifi、ZigBee,會(huì)形成怎樣的競爭抑或合作格局呢?
2016-04-22 14:34:391737

形成的根源在于耦合 - 容性耦合和感性耦合

,由于干擾源的不確定性,噪聲一般會(huì)同時(shí)影響信號的邊沿和幅度。因此,對于來說兩個(gè)方面的影響都應(yīng)該考慮。形成的根源在于耦合。在多導(dǎo)體系統(tǒng)中,導(dǎo)體間通過電場和磁場發(fā)生耦合。這種耦合會(huì)把信號的一部分
2018-12-24 11:56:24

之耦合的方式

,由于干擾源的不確定性,噪聲一般會(huì)同時(shí)影響信號的邊沿和幅度。因此,對于來說兩個(gè)方面的影響都應(yīng)該考慮。形成的根源在于耦合。在多導(dǎo)體系統(tǒng)中,導(dǎo)體間通過電場和磁場發(fā)生耦合。這種耦合會(huì)把信號的一部分能量傳遞到鄰近的導(dǎo)體上,從而形成噪聲。耦合的方式主要有兩種:1、容性耦合。2、感性耦合。
2019-05-31 06:03:14

介紹

繼上一篇“差模(常模)噪聲與共模噪聲”之后,本文將對“”進(jìn)行介紹。是由于線路之間的耦合引發(fā)的信號和噪聲等的傳播,也稱為“串音干擾”。特別是“串音”在模擬通訊時(shí)代是字如其意、一目了然的表達(dá)
2018-11-29 14:29:12

是什么原理?

的基本原理
2021-03-18 06:26:37

溯源是什么?

所謂,是指有害信號從一個(gè)傳輸線耦合到毗鄰傳輸線的現(xiàn)象,噪聲源(攻擊信號)所在的信號網(wǎng)絡(luò)稱為動(dòng)態(tài)線,***的信號網(wǎng)絡(luò)稱為靜態(tài)線。產(chǎn)生的過程,從電路的角度分析,是由相鄰傳輸線之間的電場(容性)耦合和磁場(感性)耦合引起,需要注意的是不僅僅存在于信號路徑,還與返回路徑密切相關(guān)。
2019-08-02 08:28:35

的來源途徑和測試方式

在選擇模數(shù)轉(zhuǎn)換器時(shí),是否應(yīng)該考慮問題?ADI高級系統(tǒng)應(yīng)用工程師Rob Reeder:“當(dāng)然,這是必須考慮的”。可能來自幾種途徑從印刷電路板(PCB)的一條信號鏈到另一條信號鏈,從IC中的一個(gè)
2019-02-28 13:32:18

怎樣學(xué)習(xí)51

怎樣學(xué)習(xí)51口,掌握了一些基本知識(shí),卻不知道從何下手,不知道怎樣一步一步的去學(xué)習(xí)
2014-05-29 20:48:07

ADC電路中造成串的原因?如何消除

是ADI的SAR型 18位單通道全差分輸入的ADC。ADC的后端是MCU,MCU將數(shù)字信號處理之后再畫到顯示屏上顯示實(shí)時(shí)波形。 調(diào)試發(fā)現(xiàn)顯示的信號有,表現(xiàn)為某一路信號懸空之后,相鄰的那一路信號
2023-12-18 08:27:39

ADC電路顯示信號有

是ADI的SAR型 18位單通道全差分輸入的ADC。ADC的后端是MCU,MCU將數(shù)字信號處理之后再畫到顯示屏上顯示實(shí)時(shí)波形。 調(diào)試發(fā)現(xiàn)顯示的信號有,表現(xiàn)為某一路信號懸空之后,相鄰的那一路信號上
2018-09-06 14:32:00

DDR跑不到速率后續(xù)來了,相鄰層深度分析!

限度的拉開,同時(shí)為了保證疊層厚度不變,就需要把信號和參考的地平面相應(yīng)的靠近。這個(gè)操作的好處是顯而易見,信號與信號之間的距離變遠(yuǎn)的同時(shí),信號與參考地平面的距離又變近了,肯定就能夠改善了啊!下面是雷豹想到
2023-06-06 17:24:55

EMC的是什么?

是由于線路之間的耦合引發(fā)的信號和噪聲等的傳播,也稱為“串音干擾”。特別是“串音”在模擬通訊時(shí)代是字如其意、一目了然的表達(dá)。兩根線(也包括PCB的薄膜布線)獨(dú)立的情況下,相互間應(yīng)該不會(huì)有電氣信號
2019-08-08 06:21:47

PCB板上的高速信號需要進(jìn)行仿真嗎?

PCB板上的高速信號需要進(jìn)行仿真嗎?
2023-04-07 17:33:31

PCB設(shè)計(jì)與-真實(shí)世界的(上)

42.3 近端與遠(yuǎn)端由靜態(tài)線耦合到動(dòng)態(tài)線上的分成兩部分,一部分往與信號方向相同,傳至接收端方向,我們把叫做遠(yuǎn)端或者前向串?dāng)_。另一部分與信號方向相反,傳至發(fā)送端方向,我們把叫做近端
2014-10-21 09:53:31

PCB設(shè)計(jì)與-真實(shí)世界的(下)

作者:一博科技SI工程師陳德恒3. 仿真實(shí)例在ADS軟件中構(gòu)建如下電路: 圖2圖2為微帶線的近端仿真圖,經(jīng)過Allegro中的Transmission line Calculators軟件對其疊
2014-10-21 09:52:58

PCB設(shè)計(jì)中如何處理問題

PCB設(shè)計(jì)中如何處理問題        變化的信號(例如階躍信號)沿
2009-03-20 14:04:47

PCB設(shè)計(jì)中避免的方法

  變化的信號(例如階躍信號)沿傳輸線由A到B傳播,傳輸線C-D上會(huì)產(chǎn)生耦合信號,變化的信號一旦結(jié)束也就是信號恢復(fù)到穩(wěn)定的直流電平時(shí),耦合信號也就不存在了,因此僅發(fā)生在信號跳變的過程當(dāng)中,并且
2018-08-29 10:28:17

PCB設(shè)計(jì)中,如何避免

變化的信號(例如階躍信號)沿傳輸線由A到B傳播,傳輸線C-D上會(huì)產(chǎn)生耦合信號,變化的信號一旦結(jié)束也就是信號恢復(fù)到穩(wěn)定的直流電平時(shí),耦合信號也就不存在了,因此僅發(fā)生在信號跳變的過程當(dāng)中,并且信號
2020-06-13 11:59:57

“一秒”讀懂對信號傳輸時(shí)延的影響

是怎么形成的。如下圖所示,當(dāng)有信號傳輸?shù)淖呔€和相鄰走之間間距較近時(shí),有信號傳輸?shù)淖呔€會(huì)在相鄰走線上引起噪聲,這種現(xiàn)象稱為形成的根本原因在于相鄰走線之間存在耦合,如下圖所示:當(dāng)信號在一走線上
2023-01-10 14:13:01

【案例分享】音頻克星——相位延遲

本文解釋了音頻的產(chǎn)生原因,當(dāng)兩個(gè)揚(yáng)聲器相隔距離過近時(shí),原本應(yīng)傳輸至一只耳朵的音頻信號會(huì)進(jìn)入另一只耳朵。文中闡述了如何通過相位延遲實(shí)現(xiàn)3D音效,使聽者兩耳處產(chǎn)生與標(biāo)準(zhǔn)視聽條件相同的信號,并以MAX9775耳機(jī)放大器為例進(jìn)行了說明。引言
2019-08-12 04:30:00

【連載筆記】信號完整性-和軌道塌陷

的途徑:容性耦合和感性耦合。發(fā)生在兩種不同情況:互連性為均勻傳輸線(電路板上大多數(shù)線)非均勻線(接插件和封裝)近端遠(yuǎn)端各不同。返回路徑是均勻平面時(shí)是實(shí)現(xiàn)最低的結(jié)構(gòu)。通常發(fā)生這種
2017-11-27 09:02:56

不得不知道的EMC機(jī)理--

噪聲一般會(huì)同時(shí)影響信號的邊沿和幅度。因此,對于來說兩個(gè)方面的影響都應(yīng)該考慮。形成的根源在于耦合。在多導(dǎo)體系統(tǒng)中,導(dǎo)體間通過電場和磁場發(fā)生耦合。這種耦合會(huì)把信號的一部分能量傳遞到鄰近的導(dǎo)體上,從而形成噪聲。耦合的方式主要有兩種:1、容性耦合。2、感性耦合。
2019-04-18 09:30:40

為什么CC1101信道出現(xiàn)現(xiàn)象?

為什么CC1101信道出現(xiàn)現(xiàn)象?各位大神,我在使用CC1101的時(shí)候,遇到如下問題,我購買的是模塊,并非自己設(shè)計(jì),所有參數(shù),使用smart rf生成,參數(shù)如下:base frequency
2016-03-11 10:01:10

互相產(chǎn)生的原因?

多了,這樣我想有個(gè)問題就是,在正常采集時(shí),這幾個(gè)通道間會(huì)不會(huì)有互相的問題。謝謝。 另外我想知道互相產(chǎn)生原因,如果能成放大器內(nèi)部解釋更好
2023-11-21 08:15:40

什么是

繼上一篇“差模(常模)噪聲與共模噪聲”之后,本文將對“”進(jìn)行介紹。是由于線路之間的耦合引發(fā)的信號和噪聲等的傳播,也稱為“串音干擾”。特別是“串音”在模擬通訊時(shí)代是字如其意、一目了然的表達(dá)
2019-03-21 06:20:15

什么是

的概念是什么?到底什么是
2021-03-05 07:54:17

什么是

什么是?互感和互容電感和電容矩陣引起的噪聲
2021-02-05 07:18:27

什么是天線模擬?

航空通信系統(tǒng)變得日益復(fù)雜,我們通常需要在同一架飛機(jī)上安裝多條天線,這樣可能會(huì)在天線間造成串,或稱同址干擾,影響飛機(jī)運(yùn)行。在本教程模型中,我們利用COMSOL Multiphysics 5.1 版本模擬了飛機(jī)機(jī)身上兩個(gè)完全相同的天線之間的干擾,其中一個(gè)負(fù)責(zé)發(fā)射,另一個(gè)負(fù)責(zé)接收,以此來分析的影響。
2019-08-26 06:36:54

什么是小間距QFN封裝PCB設(shè)計(jì)抑制?

一、引言隨著電路設(shè)計(jì)高速高密的發(fā)展趨勢,QFN封裝已經(jīng)有0.5mm pitch甚至更小pitch的應(yīng)用。由小間距QFN封裝的器件引入的PCB走線扇出區(qū)域的問題也隨著傳輸速率的升高而越來越突出
2019-07-30 08:03:48

使用AD9910內(nèi)部的PLL發(fā)現(xiàn)有信號

我用AD9910做了塊板子,使用AD9910內(nèi)部的PLL,參考時(shí)鐘為10MHz,64倍頻,輸出80MHz,發(fā)現(xiàn)在70MHz和90MHz處有信號,幅值與80MHz差65dB。懷疑是AD9910
2018-11-19 09:46:32

使用ADS進(jìn)行仿真

領(lǐng)域的工程師離不開,近些年來,高速信號完整性領(lǐng)域也越來越多的工程師喜歡上了這款“不要不要”的軟件。鑒于國內(nèi)外的很多ADS的資料都是微波射頻領(lǐng)域的,接下來,我們會(huì)慢慢的分享一些ADS在信號完整性領(lǐng)域經(jīng)常使用的小功能和技巧。今天給大家介紹使用ADS進(jìn)行的仿真。
2019-06-28 08:09:46

信號完整性問題中的信號及其控制的方法是什么

信號產(chǎn)生的機(jī)理是什么的幾個(gè)重要特性分析線間距P與兩線平行長度L對大小的影響如何將控制在可以容忍的范圍
2021-04-27 06:07:54

幾張圖讓你輕松理解DDR的

一博科技自媒體高速先生原創(chuàng)文 | 黃剛讓你評估高速串行信號的,你會(huì)說它們的在-40db以下,沒什么影響。但是如果讓你評估像DDR這種并行信號的,你說DQ0和DQ1的-30db,DQ1
2019-09-05 11:01:14

包地與

面對,包地是萬能的嗎?請看不一樣的解答
2016-12-30 16:29:07

原創(chuàng)|SI問題之

在t=TD時(shí)刻,而且的持續(xù)時(shí)間基本上就等于信號的上升時(shí)間或下降時(shí)間。 圖4信號上升沿產(chǎn)生的遠(yuǎn)端/近端信號示意圖干擾源傳輸線驅(qū)動(dòng)信號從低到高的變化過程中,在鄰近傳輸線上產(chǎn)生的近端干擾與遠(yuǎn)端干擾上面圖
2016-10-10 18:00:41

在設(shè)計(jì)fpga的pcb時(shí)可以減少的方法有哪些呢?

在設(shè)計(jì)fpga的pcb時(shí)可以減少的方法有哪些呢?求大神指教
2023-04-11 17:27:02

在選擇模數(shù)轉(zhuǎn)換器時(shí),是否應(yīng)該考慮問題?

問題:選擇模數(shù)轉(zhuǎn)換器時(shí)是否應(yīng)考慮問題?答案:當(dāng)然!可能來自幾種途徑:從印刷電路板(PCB)的一條信號鏈到另一條信號鏈,從IC中的一個(gè)通道到另一個(gè)通道,或者是通過電源時(shí)產(chǎn)生。理解的關(guān)鍵在于
2018-10-26 10:53:12

基于S參數(shù)的PCB描述

如果您給某個(gè)傳輸線的一端輸入信號,該信號的一部分會(huì)出現(xiàn)在相鄰傳輸線上,即使它們之間沒有任何連接。信號通過周邊電磁場相互耦合會(huì)產(chǎn)生噪聲,這就是的來源,它將引起數(shù)字系統(tǒng)的誤碼。一旦這種噪聲在相鄰
2019-07-08 08:19:27

基于高速PCB分析及其最小化

稱為遠(yuǎn)端(也稱前向串?dāng)_)。主要源自兩相鄰導(dǎo)體之間所形成的互感Lm和互容Cm。  2.1感性耦合  在圖1中,先只考慮互感Lm引起的感性耦合。線路A到B上傳輸?shù)男盘柕拇艌鲈诰€路C到D上感應(yīng)出電壓
2018-09-11 15:07:52

如何減小SRAM讀寫操作時(shí)的

靜態(tài)存儲(chǔ)器SRAM是一款不需要刷新電路即能保存內(nèi)部存儲(chǔ)數(shù)據(jù)的存儲(chǔ)器。在SRAM 存儲(chǔ)陣列的設(shè)計(jì)中,經(jīng)常會(huì)出現(xiàn)問題發(fā)生。那么要如何減小如何減小SRAM讀寫操作時(shí)的,以及提高SRAM的可靠性呢
2020-05-20 15:24:34

如何減小系統(tǒng)多個(gè)電源之間形成和噪聲大的問題?

解答: 一般acdc電源模塊輸入串聯(lián)供電時(shí),都會(huì)存在情況,特別是并聯(lián)多個(gè)電源時(shí),一般采取的方法為輸入和輸出都增加濾波電路,可以在輸入端增加共模電感和X電容,輸出端做π型濾波。
2018-07-17 16:14:18

如何降低嵌入式系統(tǒng)的影響?

在嵌入式系統(tǒng)硬件設(shè)計(jì)中,是硬件工程師必須面對的問題。特別是在高速數(shù)字電路中,由于信號沿時(shí)間短、布線密度大、信號完整性差,的問題也就更為突出。設(shè)計(jì)者必須了解產(chǎn)生的原理,并且在設(shè)計(jì)時(shí)應(yīng)用恰當(dāng)?shù)姆椒ǎ?b class="flag-6" style="color: red">串產(chǎn)生的負(fù)面影響降到最小。
2019-11-05 08:07:57

存在時(shí)的抖動(dòng)和定時(shí),你想知道的都在這

存在時(shí)的抖動(dòng)和定時(shí),你想知道的都在這
2021-05-07 06:56:55

小間距QFN封裝PCB設(shè)計(jì)抑制問題分析與優(yōu)化

一、引言隨著電路設(shè)計(jì)高速高密的發(fā)展趨勢,QFN封裝已經(jīng)有0.5mm pitch甚至更小pitch的應(yīng)用。由小間距QFN封裝的器件引入的PCB走線扇出區(qū)域的問題也隨著傳輸速率的升高而越來越突出
2018-09-11 11:50:13

怎么實(shí)現(xiàn)基于AD8108的寬頻帶低視頻切換矩陣的設(shè)計(jì)?

怎么實(shí)現(xiàn)基于AD8108的寬頻帶低視頻切換矩陣的設(shè)計(jì)?
2021-06-08 06:18:11

怎么抑制PCB小間距QFN封裝引入的

隨著電路設(shè)計(jì)高速高密的發(fā)展趨勢,QFN封裝已經(jīng)有0.5mm pitch甚至更小pitch的應(yīng)用。由小間距QFN封裝的器件引入的PCB走線扇出區(qū)域的問題也隨著傳輸速率的升高而越來越突出。對于
2021-03-01 11:45:56

最近買了臺(tái)RIGOL的機(jī)器,感覺通道好大!!!!!!!...

`最近新買了一臺(tái)RIGOL的1000Z,在用CH1測試10M正弦波信號時(shí),CH2的信號好大(當(dāng)時(shí)沒有給通道二信號,本應(yīng)是一條直線,可是有一個(gè)接近小正弦波的信號!!!!!!!!!!!!!下圖就是
2013-08-14 17:23:14

消除的方法

消除的方法合理的PCB布局-將敏感的模擬部分與易產(chǎn)生干擾的數(shù)字部分盡量隔離,使易產(chǎn)生干擾的數(shù)字信號走線上盡量靠近交流地,使高頻信號獲得較好的回流路徑。盡量減小信號回路的面積,降低地線的阻抗,采用多點(diǎn)接地的方法。使用多層板將電源與地作為獨(dú)立的一層來處理。合理的走線拓樸結(jié)構(gòu)-盡量采用菊花輪式走線 
2009-06-18 07:52:34

用于PCB品質(zhì)驗(yàn)證的時(shí)域測量法分析

采用合適的線端負(fù)載,因?yàn)榫€端負(fù)載會(huì)影響的大小和隨時(shí)間的弱化程度。下面是一個(gè)測量實(shí)例,揭示了走線末端與邏輯門電路輸出處的線端負(fù)載會(huì)怎樣衰減并減弱形成的成因。參考文獻(xiàn):[1]. PCB datasheet http://www.dzsc.com/datasheet/PCB_1201640.html.:
2018-11-27 10:00:09

電路板

最近做了一塊板子,測試的時(shí)候發(fā)現(xiàn)臨近的3條線上的信號是一樣的,應(yīng)該是問題,不知道哪位大神能不能給個(gè)解決方案!愿意幫忙的,可以回帖然后我把設(shè)計(jì)文件發(fā)給你,十分感謝!
2013-04-11 18:11:01

矢量網(wǎng)絡(luò)分析儀如何測試

矢量網(wǎng)絡(luò)分析儀如何測試,設(shè)備如何設(shè)置
2023-04-09 17:13:25

示波器通道間的影響

示波器通道間的影響  目前幾乎所有通用品牌的主流示波器通道都不是隔離的,那么在進(jìn)行多通道測試的時(shí)候,通道與通道之間會(huì)一定程度互相干擾,因此通道隔離度指標(biāo)非常重要,隔離度越高的示波器測量就越精確
2020-03-23 18:53:35

綜合布線測試的重要參數(shù)——

雙絞線的性能在一直不斷的提高,但有一個(gè)參數(shù)一直伴隨著雙絞線,并且伴隨著雙絞線的發(fā)展,這個(gè)參數(shù)也越來越重要,它就是 (Crosstalk)。是影響數(shù)據(jù)傳輸最嚴(yán)重的因素之一。它是一個(gè)信號對另外一個(gè)
2018-01-19 11:15:04

解決PCB設(shè)計(jì)消除的辦法

在PCB電路設(shè)計(jì)中有很多知識(shí)技巧,之前我們講過高速PCB如何布局,以及電路板設(shè)計(jì)最常用的軟件等問題,本文我們講一下關(guān)于怎么解決PCB設(shè)計(jì)中消除的問題,快跟隨小編一起趕緊學(xué)習(xí)下。 是指在一根
2020-11-02 09:19:31

請問ADC電路的原因是什么?

是SAR型 18位單通道全差分輸入的ADC。ADC的后端是MCU,MCU將數(shù)字信號處理之后再畫到顯示屏上顯示實(shí)時(shí)波形。 調(diào)試發(fā)現(xiàn)顯示的信號有,表現(xiàn)為某一路信號懸空之后,相鄰的那一路信號上就會(huì)出現(xiàn)噪聲。將采樣的時(shí)間延長也無法消除。想請教一下各路專家,造成串的原因和如何消除,謝謝。
2019-05-14 14:17:00

請問一下怎么解決高速高密度電路設(shè)計(jì)中的問題?

高頻數(shù)字信號的產(chǎn)生及變化趨勢導(dǎo)致的影響是什么怎么解決高速高密度電路設(shè)計(jì)中的問題?
2021-04-27 06:13:27

高速PCB布局的分析及其最小化

)。主要源自兩相鄰導(dǎo)體之間所形成的互感Lm和互容Cm。        2.1感性耦合&nbsp
2009-03-20 13:56:06

高速PCB板設(shè)計(jì)中的問題和抑制方法

?????? 高速PCB設(shè)計(jì)的整個(gè)過程包括了電路設(shè)計(jì)、芯片選擇、原理圖設(shè)計(jì)、PCB布局布線等步驟,設(shè)計(jì)時(shí)需要在不同的步驟里發(fā)現(xiàn)并采取辦法來抑制,以達(dá)到減小干擾的目的。 ??????
2018-08-28 11:58:32

高速互連信號的分析及優(yōu)化

高速數(shù)字設(shè)計(jì)領(lǐng)域里,信號完整性已經(jīng)成了一個(gè)關(guān)鍵的問題,給設(shè)計(jì)工程師帶來越來越嚴(yán)峻的考驗(yàn)。信號完整性問題主要為反射、、延遲、振鈴和同步開關(guān)噪聲等。本文基于高速電路設(shè)計(jì)的信號完整性基本理論,通過近端
2010-05-13 09:10:07

高速差分過孔之間的分析及優(yōu)化

在硬件系統(tǒng)設(shè)計(jì)中,通常我們關(guān)注的主要發(fā)生在連接器、芯片封裝和間距比較近的平行走線之間。但在某些設(shè)計(jì)中,高速差分過孔之間也會(huì)產(chǎn)生較大的,本文對高速差分過孔之間的產(chǎn)生的情況提供了實(shí)例仿真分析
2018-09-04 14:48:28

高速差分過孔產(chǎn)生的情況仿真分析

方向的間距時(shí),就要考慮高速信號差分過孔之間的問題。順便提一下,高速PCB設(shè)計(jì)的時(shí)候應(yīng)該盡可能最小化過孔stub的長度,以減少對信號的影響。如下圖所1示,靠近Bottom層走線這樣Stub會(huì)比較短。或者
2020-08-04 10:16:49

高速數(shù)字系統(tǒng)的問題怎么解決?

問題產(chǎn)生的機(jī)理是什么高速數(shù)字系統(tǒng)的問題怎么解決?
2021-04-25 08:56:13

高速電路信號完整性分析與設(shè)計(jì)—

高速電路信號完整性分析與設(shè)計(jì)—是由電磁耦合引起的,布線距離過近,導(dǎo)致彼此的電磁場相互影響只發(fā)生在電磁場變換的情況下(信號的上升沿與下降沿)[此貼子已經(jīng)被作者于2009-9-12 10:32:03編輯過]
2009-09-12 10:31:08

高速電路設(shè)計(jì)中反射和形成原因是什么

高速PCB設(shè)計(jì)中的信號完整性概念以及破壞信號完整性的原因高速電路設(shè)計(jì)中反射和形成原因
2021-04-27 06:57:21

近端&遠(yuǎn)端

前端
信號完整性學(xué)習(xí)之路發(fā)布于 2022-03-02 11:41:28

#硬聲創(chuàng)作季 18-1 無碼間的時(shí)域和頻域條件(上)

通信技術(shù)通信原理
Mr_haohao發(fā)布于 2022-08-31 20:59:49

#硬聲創(chuàng)作季 高級PCB設(shè)計(jì)視頻教程 :7-22 SI仿真及優(yōu)化

PCB設(shè)計(jì)
Mr_haohao發(fā)布于 2022-09-25 08:08:07

pn結(jié)的形成/多晶硅中PN結(jié)是怎樣形成的?

pn結(jié)的形成/多晶硅中PN結(jié)是怎樣形成的? PN結(jié)及其形成過程  在雜質(zhì)半導(dǎo)體中, 正負(fù)電荷數(shù)是相等的,它們的作用相互抵消
2010-02-26 11:40:455038

5G和AI將會(huì)形成怎樣的新操作

在5G時(shí)代,AI將參與到傳統(tǒng)通信生態(tài)中,貫穿整個(gè)通信生態(tài)系統(tǒng)的業(yè)務(wù)和網(wǎng)絡(luò)領(lǐng)域,幫助提升信息效率和通信性能,從而扮演推進(jìn)器的角色。
2020-04-17 11:16:45257

已全部加載完成

主站蜘蛛池模板: 国产精品青草久久| 天天爱夜夜做| 色牛网| 新版bt天堂资源在线| 免费观看理论片毛片| 狠狠激情五月综合婷婷俺| 午夜撸| 69hdxxxx日本| 中出丰满大乳中文字幕| 欧美色欧美亚洲高清在线视频| www.在线| 欧美性满足hd1819| 网www天堂资源在线| 欧美成人69| 国产大乳孕妇喷奶水在线观看| 乱人伦精品一区二区| 欧美三级黄| 五月天婷婷色图| 国产98色在线| 国产精品九九热| 性欧美www| aaa一级黄色片| 久久成人福利视频| 中文在线天堂网| 青青青草国产| 91精选视频在线观看| 久插| 亚洲国产综合久久精品| 第四色激情| 国产精品xxxav免费视频| 亚洲伊人久久大香线蕉结合| 国模吧新入口| 欧美人成网| 日本a级在线| 日韩天天操| 一色屋网站| 成 人在线观看视频网站| 一区卡二区卡三区卡视频| 五月亭亭免费高清在线| av成人在线播放| 欧美性xxxxxbbbbbb精品|