從物聯(lián)網(wǎng)從業(yè)者的角度來(lái)看,經(jīng)常看到對(duì)計(jì)算更加可用和分布式的需求。當(dāng)開(kāi)始將物聯(lián)網(wǎng)與OT和IT系統(tǒng)整合時(shí),面臨的第一個(gè)問(wèn)題是設(shè)備發(fā)送到服務(wù)器的龐大數(shù)據(jù)量。 在一個(gè)工廠自動(dòng)化的場(chǎng)景中,可能有數(shù)百個(gè)集成的傳感器,這些傳感器每1秒發(fā)送3個(gè)數(shù)據(jù)點(diǎn)。大部分的傳感器數(shù)據(jù)在5秒鐘之后就完全沒(méi)用了。 數(shù)百個(gè)傳感器,多個(gè)網(wǎng)關(guān),多個(gè)進(jìn)程,和多個(gè)系統(tǒng),需要幾乎在瞬間處理這些數(shù)據(jù)。
大多數(shù)數(shù)據(jù)處理的支持者都支持云模型,即總是應(yīng)該向云發(fā)送一些東西。 這也是第一種物聯(lián)網(wǎng)計(jì)算基礎(chǔ)。
1. 物聯(lián)網(wǎng)的云計(jì)算
通過(guò)物聯(lián)網(wǎng)和云計(jì)算模型,基本上推動(dòng)和處理你的感官數(shù)據(jù)在云。 你有一個(gè)攝入模塊,它可以接收數(shù)據(jù)并存儲(chǔ)在一個(gè)數(shù)據(jù)湖(一個(gè)非常大的存儲(chǔ)器) ,然后對(duì)它進(jìn)行并行處理(它可以是 Spark,Azure HD Insight,Hive,等等) ,然后使用快節(jié)奏的信息來(lái)做決定。
自從開(kāi)始構(gòu)建物聯(lián)網(wǎng)解決方案,現(xiàn)在有了許多新的產(chǎn)品和服務(wù),可以非常容易地做到這一點(diǎn):
可以使用 AWS Kinesis 和 Big data lambda services
可以利用 Azure 的生態(tài)系統(tǒng),讓構(gòu)建大數(shù)據(jù)能力變得極其容易
或者,可以使用像 Google Cloud 產(chǎn)品這樣的工具如Cloud IoT Core
在物聯(lián)網(wǎng)中面臨的一些挑戰(zhàn)是:
私有平臺(tái)的使用者和企業(yè)對(duì)于擁有他們的數(shù)據(jù)在谷歌,微軟,亞馬遜等感到不舒服
延遲和網(wǎng)絡(luò)中斷問(wèn)題
增加了存儲(chǔ)成本、數(shù)據(jù)安全性和持久性
通常,大數(shù)據(jù)框架不足以創(chuàng)建一個(gè)能夠滿足數(shù)據(jù)需求的大型攝入模塊
2. 面向物聯(lián)網(wǎng)的霧計(jì)算
通過(guò)霧計(jì)算,可以變得更加強(qiáng)大。 霧計(jì)算使用的是本地處理單元或計(jì)算機(jī),而不是將數(shù)據(jù)一路發(fā)送到云端并等待服務(wù)器處理和響應(yīng)。
4-5年前,還沒(méi)有像 Sigfox 和 LoraWAN 那樣的無(wú)線解決方案,BLE也沒(méi)有mesh或遠(yuǎn)程功能。因此,必須使用更昂貴的網(wǎng)絡(luò)解決方案,以確保能夠建立一個(gè)安全,持久的連接到數(shù)據(jù)處理單元。 這個(gè)中心單元是解決方案的核心,很少有專業(yè)的解決方案提供商。
從實(shí)施一個(gè)霧網(wǎng)絡(luò)中可以了解到:
這并不是很簡(jiǎn)單,需要知道和理解很多事情。構(gòu)建軟件,或者說(shuō)在物聯(lián)網(wǎng)上所做的,是更直接和開(kāi)放的。 而且,當(dāng)把網(wǎng)絡(luò)當(dāng)成一道屏障時(shí),它會(huì)降低速度。
對(duì)于這樣的實(shí)現(xiàn),需要一個(gè)非常大的團(tuán)隊(duì)和多個(gè)供應(yīng)商。 通常也會(huì)面臨供應(yīng)商的鎖定。
OpenFog是一個(gè)由著名業(yè)內(nèi)人士開(kāi)發(fā)的專為霧計(jì)算架構(gòu)而設(shè)計(jì)的開(kāi)放霧計(jì)算框架。 它提供了用例,試驗(yàn)臺(tái),技術(shù)規(guī)格, 還有一個(gè)參考體系結(jié)構(gòu)。
3. 物聯(lián)網(wǎng)邊緣計(jì)算
物聯(lián)網(wǎng)是關(guān)于捕捉微小的交互作用,并盡可能快地做出反應(yīng)。 邊緣計(jì)算離數(shù)據(jù)源最近,能夠在傳感器區(qū)域應(yīng)用機(jī)器學(xué)習(xí)。 如果陷入了邊緣和霧計(jì)算的討論,應(yīng)該明白,邊緣計(jì)算是所有關(guān)于智能傳感器節(jié)點(diǎn)的應(yīng)用,而霧計(jì)算仍然是關(guān)于局域網(wǎng)絡(luò),可以為數(shù)據(jù)量大的操作提供計(jì)算能力。
像微軟和亞馬遜這樣的行業(yè)巨頭已經(jīng)發(fā)布了 Azure IoT Edge 和 AWS Green Gas,用于提高物聯(lián)網(wǎng)網(wǎng)關(guān)和傳感器節(jié)點(diǎn)上的機(jī)器智能,這些網(wǎng)關(guān)和傳感器節(jié)點(diǎn)擁有良好的計(jì)算能力。 雖然這些都是非常好的解決方案,可以讓工作變得非常簡(jiǎn)單,但是它顯著地改變了從業(yè)者所知道和使用的邊緣計(jì)算的含義。
邊緣計(jì)算不應(yīng)該要求機(jī)器學(xué)習(xí)算法在網(wǎng)關(guān)上運(yùn)行來(lái)構(gòu)建智能。 2015年,Alex 在 ECI 會(huì)議上談到了嵌入式人工智能在神經(jīng)記憶處理器上的工作:
真正的邊緣計(jì)算將發(fā)生在這樣的神經(jīng)元裝置上,它們可以預(yù)裝機(jī)器學(xué)習(xí)算法,服務(wù)于單一的目的和責(zé)任。 那會(huì)很棒嗎? 讓我們假設(shè)倉(cāng)庫(kù)的結(jié)束節(jié)點(diǎn)可以對(duì)很少的幾個(gè)關(guān)鍵字符串執(zhí)行本地 NLP,這些關(guān)鍵字符串構(gòu)成密碼,比如“芝麻開(kāi)門”!
這種邊緣設(shè)備通常有一個(gè)類似神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu),所以當(dāng)加載一個(gè)機(jī)器學(xué)習(xí)算法的時(shí)候,基本上就是在里面燃燒了一個(gè)神經(jīng)網(wǎng)絡(luò)。 但這種燃燒是永久性的,無(wú)法逆轉(zhuǎn)。
有一個(gè)全新的嵌入式設(shè)備空間,可以在低功率傳感器節(jié)點(diǎn)上促進(jìn)嵌入式邊緣智能。
4. 物聯(lián)網(wǎng)的 MIST 計(jì)算
可以做以下事情來(lái)促進(jìn)物聯(lián)網(wǎng)的數(shù)據(jù)處理和智能化:
基于云計(jì)算的模型
基于霧的計(jì)算模型
邊緣計(jì)算模型
這里有一種計(jì)算機(jī)類型,它補(bǔ)充了霧和邊緣計(jì)算,使它們變得更好,而不需要再等上年。 可以簡(jiǎn)單地引入物聯(lián)網(wǎng)設(shè)備的網(wǎng)絡(luò)功能,分配工作負(fù)載,既沒(méi)有霧也沒(méi)有邊緣計(jì)算提供的動(dòng)態(tài)智能模型。
建立這種模式可以帶來(lái)高速的數(shù)據(jù)處理和智能提取的設(shè)備,具有256kb 的內(nèi)存大小和 ~ 100kb / 秒的數(shù)據(jù)傳輸速率。 對(duì)于 Mesh 網(wǎng)絡(luò),肯定會(huì)看到這樣一個(gè)計(jì)算模型的促進(jìn)者,會(huì)有人提出一個(gè)更好的基于 MIST 系統(tǒng)的模型,可以很容易地使用它。
來(lái)源: 企業(yè)網(wǎng)D1Net
評(píng)論
查看更多