基于opencv的灰度變換
不同灰度變換只是使用的公式不同而已,核心思想都是在空間域直接對(duì)每一個(gè)像素的灰度值進(jìn)行判斷處理,代碼很簡(jiǎn)單。
//基本灰度變換
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
#define CUTTING_LOW 0
//查看像素值
void View(Mat src)
{
ofstream PView;
PView.open("PView.txt");
int num = 0;
for (int i = 0;i < src.rows;i++)
{
for (int j = 0;j < src.cols;j++)
{
if (num == 50)
{
num = 0;
PView << endl;
}
else
{
int a = src.at
PView << a << " ";
num++;
}
}
}
PView.close();
}
//圖像反轉(zhuǎn)
void Reverse(Mat src,Mat intermediate)
{
for (int i = 0;i < src.rows;i++)
{
for (int j = 0;j < src.cols;j++)
{
intermediate.at
}
}
}
#e#
//對(duì)數(shù)變換
void Log(Mat src, Mat intermediate,int c)
{
for (int i = 0;i < src.rows;i++)
{
for (int j = 0;j < src.cols;j++)
{
int b = c*log(1+src.at
int d = b % 256;
intermediate.at
}
}
}
//冪次變換
void Power(Mat src, Mat intermediate,float gamma)
{
for (int i = 0;i < src.rows;i++)
{
for (int j = 0;j < src.cols;j++)
{
float c = pow(255, 1 - gamma);
int b = c*pow(src.at
int d = b % 256;
intermediate.at
}
}
}
//對(duì)比拉伸
void Stretch(Mat src, Mat intermediate,float r1, float s1, float r2, float s2 )
{
float k1, k2, k3, b1, b2, b3;
k1 = s1 / r1;
b1 = 0.0;
k2 = (s2 - s1) / (r2 - r1);
b2 = (s1*r2 - s2*r1) / (r2 - r1);
k3 = (255.0 - s2) / (255.0 - r2);
b3 = (255.0*s2-r2*255.0) / (255.0 - r2);
cout << b3;
for (int i = 0;i < src.rows;i++)
{
for (int j = 0;j < src.cols;j++)
{
if (src.at
{
int a = k1*src.at
int b = a % 256;
intermediate.at
}
if (src.at
{
int a = k2*src.at
int b = a % 256;
intermediate.at
}
if (src.at
{
int a = k3*src.at
int b = a % 256;
intermediate.at
}
}
}
}
#e#
//灰度切割
void Cutting(Mat src, Mat intermediate, float r1,float r2,int type,int low,int high)
{
if (type == CUTTING_MAINTAIN)
{
for (int i = 0;i < src.rows;i++)
{
for (int j = 0;j < src.cols;j++)
{
if (src.at
{
intermediate.at
}
if (src.at
{
intermediate.at
}
if (src.at
{
intermediate.at
}
}
}
}
else
{
for (int i = 0;i < src.rows;i++)
{
for (int j = 0;j < src.cols;j++)
{
if (src.at
{
intermediate.at
}
if (src.at
{
intermediate.at
}
if (src.at
{
intermediate.at
}
}
}
}
}
int main()
{
Mat src = cv::imread("Spectrum.tif", 0),temp;
Mat intermediate(src.rows, src.cols, CV_8UC1);
//cv::resize(src, temp, Size(src.cols*0.6, src.rows*0.6));
cv::imshow("Source", src);
//View(src);
Reverse(src, intermediate);
//Log(src, intermediate,45);
//Power(src, intermediate, 0.8);
//Stretch(src, intermediate,32.0,96.0,160.0,224.0);
//Cutting(src, intermediate, 50.0, 100.0,CUTTING_MAINTAIN,0,255);
//cv::resize(intermediate, intermediate, Size(intermediate.cols*0.6, intermediate.rows*0.6));
cv::imshow("intermediate", intermediate);
cv::imwrite("D:\\Computer Software\\Visual Studio 2015\\Projects\\ImageProcessing\\ImageProcessing\\檢測(cè)結(jié)果Spectrum-Reverse.tif", intermediate);
cv::waitKey(0);
return 0;
}
代碼里處理的圖片都是《數(shù)字圖像處理》的源圖像,第二版的好像不再出版了,只找到了第三版的源圖像,不過差不太多的。
附部分檢測(cè)結(jié)果的圖片:
1.冪次變換用于增強(qiáng)對(duì)比度:
源圖像:
冪次變換(γ=0.4):
?
2.灰度切割:
源圖像:
?
增強(qiáng)[50,100]區(qū)間灰度值為255,其余灰度值保持不變:
增強(qiáng)[50,100]區(qū)間灰度值為255,其余灰度值變化為0:
?
改進(jìn)一下:
實(shí)現(xiàn)鼠標(biāo)交互操作:使用鼠標(biāo)圈出矩形框,只對(duì)矩形框內(nèi)像素進(jìn)行處理,可以更直觀的觀察某種算法對(duì)圖像產(chǎn)生的變化。下面以對(duì)比拉伸為例:
#include
#include
#include
#include
using namespace std;
using namespace cv;
Rect rect;
bool rect_flag = false;
//獲取鼠標(biāo)所選取的矩形
void onMouse(int event,int x,int y,int flags,void*param)
{
if (event == CV_EVENT_LBUTTONDOWN)
{
rect.x = x;
rect.y = y;
rect_flag = false;
}
if (event == CV_EVENT_LBUTTONUP)
{
rect.width = x - rect.x;
rect.height = y - rect.y;
rect_flag = true;
}
}
//對(duì)比拉伸
void Stretch(Mat src, Mat intermediate,float r1, float s1, float r2, float s2 )
{
float k1, k2, k3, b1, b2, b3;
k1 = s1 / r1;
b1 = 0.0;
k2 = (s2 - s1) / (r2 - r1);
b2 = (s1*r2 - s2*r1) / (r2 - r1);
k3 = (255.0 - s2) / (255.0 - r2);
b3 = (255.0*s2-r2*255.0) / (255.0 - r2);
for (int i = rect.y;i < rect.y+rect.height;i++)
{
for (int j = rect.x;j < rect.x+rect.width;j++)
{
if (src.at
{
int a = k1*src.at
int b = a % 256;
intermediate.at
}
if (src.at
{
int a = k2*src.at
int b = a % 256;
intermediate.at
}
if (src.at
{
int a = k3*src.at
int b = a % 256;
intermediate.at
}
}
}
}
int main()
{
Mat src = cv::imread("Pollen.tif", 0),temp, intermediate;
cv::resize(src, temp, Size(src.cols*0.6, src.rows*0.6));
cv::imshow("Source", temp);
namedWindow("intermediate",1);
setMouseCallback("intermediate", onMouse, 0);
while (1)
{
cv::resize(src, intermediate, Size(src.cols*0.6, src.rows*0.6));
//消除第一次畫矩形后第二次點(diǎn)擊鼠標(biāo)直接在點(diǎn)擊位置畫出與上一個(gè)矩形等大矩形的情況
if (rect_flag)
{
Stretch(temp, intermediate, 100.0, 1.0, 120.0, 254.0);
cv::rectangle(intermediate, rect, Scalar(255, 0, 0), 1);
}
cv::imshow("intermediate", intermediate);
//ESC按鍵
char c = (char)waitKey(20);
if (27 == c)
return -1;
}
return 0;
}
效果圖
?
評(píng)論
查看更多